Что такое фазорегулятор двигателя

Принцип действия фазорегулятора

Чтобы разобраться почему трещит фазорегулятор или клинит его клапан, имеет смысл разобраться в принципе действия всей системы. Это даст лучшее понимание поломок и дальнейших действий по их ремонту.

На различных оборотах двигатель работает не одинаково. Для холостых и низких оборотов характерны так называемые «узкие фазы», при которых скорость отвода выхлопных газов невелики. И наоборот, для больших оборотов характерны «широкие фазы», когда объем выпускаемых газов большой. Если на низких оборотах будут использоваться «широкие фазы», то отработанные газы будут смешиваться со вновь поступающими, что приведет к снижению мощности двигателя, и даже его остановке. А когда на высоких оборотах включаться «узкие фазы», то приведет к снижению мощности мотора и его динамике работы.

Существует несколько типов систем фазорегуляторов. VVT (Variable Valve Timing), разработана Volkswagen, CVVT — используется Kia и Hyindai, VVT-i — применяется Toyota и VTC — устанавливаются на движки Honda, VCP — фазорегуляторы Renault, Vanos / Double Vanos — система, используемая в BMW. Далее рассмотрим принцип действия фазорегулятора на примере автомобиля «Рено Меган 2» с 16-ти клапанным двигателем К4М, поскольку выход его из строя является «детской болезнью» этой машины и ее владельцы чаще всего сталкиваются с неработающим фазорегулятором.

Управление происходит через электромагнитный клапан, подача масла к которому регулируется электронными сигналами с дискретной частотой 0 или 250 Гц. Весь этот процесс контролируется электронным блоком управления на основании сигналов, поступающих от датчиков двигателя. Включение фазорегулятора происходит при возрастающей нагрузке на двигатель (значение оборотов от 1500 до 4300 оборотов в минуту) когда соблюдаются следующие условия:

Возвращение фазорегулятора в исходное положение происходит когда обороты снижаются при тех же условиях, но с тем отличием, что рассчитано нулевое смещение фаз. В этом случае запорный плунжер блокирует механизм. Таким образом, «виновниками» неисправности фазорегулятора могут быть не только он сам, но и электромагнитный клапан, датчики двигателя, неисправности в моторе, сбои в работе ЭБУ.

Коды ошибок и замена электромагнитного клапана

Если было замечено, что в процессе набора мощности мотором Пежо 308 машина начинает дергаться, а бортовой компьютер выдает сообщение об ошибке, возможно, вышел из строя клапан регулировки фаз Пежо 308. Это могут подтвердить коды ошибок Р0013 и Р0014 полученные после диагностики двигателя.

При нарушении работы клапана фаз, на автомобиле Пежо сразу появиться ошибка check engine, далее последует переход двигателя в аварийный режим работы.

Расшифровка полученных ошибок после диагностики может обозначать следующее:

  1. Поломан электромагнитный клапан фаз, из-за чего нет полноценной подачи масла на фазовращатель. Ввиду этого выпускной распределительный вал не проворачивается на установленный угол. В такой ситуации нужна замена вышедшей из строя детали.
  2. Произошло повреждение уплотнительных колец, обеспечивающих герметизацию масляных магистралей. Для устранения поломки необходима их замена.
  3. Повреждение проводки датчика контроля положения выпускного распредвала, из-за чего на электронный блок управления поступают неправильные данные. Для ремонта нужно проверить соединение клеммных контактов на датчике.

Замена электромагнитного клапана системы ГРМ автомобиля Пежо 308 состоит в следующих несложных действиях:

  1. Отсоединяются клеммы на аккумуляторной батарее.
  2. Отсоединяется разъем на электромагнитном клапане.
  3. Выкручивается крепежный болт.
  4. Вынимается поломанный электромагнитный клапан.
  5. Вставляется новая запчасть и закручивается крепежный болт.
  6. Все отсоединенные провода подсоединяются на свои места.

Заменив электромагнитный клапан на автомобиле Пежо 308 можно восстановить динамику разгона, стабилизировать обороты двигателя, уменьшить уровень выхлопных газов и конечно убрать ошибку на табло бортового компьютера.

Причины неисправности фазорегулятора

Неисправности делят непосредственно по фазорегулятору и по его управляющему клапану. Так, причинами неисправности фазорегулятора являются:

  • Износ поворотного механизма (лопатки/лопасти). В обычных условиях это происходит по естественным причинам, и менять фазорегуляторы рекомендуется через каждые 100…200 тысяч километров пробега. Ускорить износ может загрязненное либо некачественное масло.
  • Смещение либо рассогласование установленных значений поворотных углов фазорегулятора. Обычно это происходит из-за того, что поворотный механизм фазорегулятора в его корпусе превышает допустимые углы поворота по причине износа металла.

А вот причины поломки клапана vvt другие.

  • Выход из строя сальника клапана фазорегулятора. У автомобилей Рено Меган 2 клапан фазорегулятора установлен в углублении в передней части двигателя, где много грязи. Соответственно, если сальник теряет герметичность, то пыль и грязь извне смешивается с маслом и попадает в рабочую полость механизма. Как результат — заклинивание клапана и износ поворотного механизма самого регулятора.
  • Проблемы с электрической цепью клапана. Это может быть ее обрыв, повреждение контакта, повреждение изоляции, замыкание на корпус либо на провод питания, снижение или повышение сопротивления.
  • Попадание пластиковой стружки. На фазорегуляторах часто лопатки делаются из пластмассы. По мере их износа они меняют свою геометрию и выпадают из посадочного места. Вместе с маслом они попадают в клапан, распадаются и измельчаются. Это может привести либо к неполному ходу штока клапана, либо даже к полному его заклиниванию.

Также причины отказа фазорегулятора могут крыться в сбое работы других связанных элементов:

  • Некорректные сигналы от ДПКВ и/или ДПРВ. Это может быть связано как с проблемами с указанными датчиками, так и с тем, что фазорегулятор износился, из-за чего распределительный либо коленчатый вал находятся в положении, выходящим за допустимые границы в конкретный момент времени. В данном случае вместе с фазорегулятором нужно проверить датчик положения коленвала и проверить ДПРВ.
  • Проблемы в работе ЭБУ. В редких случаях в электронном блоке управления происходит программный сбой и даже при всех корректных данных он начинает выдавать ошибки, в том числе в отношении фазорегулятора.

Для чего предназначено

Реле контроля фаз и напряжения — устройство, которое необходимо при подключении оборудования к системе с тремя фазами, а также в ситуациях, когда важно соблюсти правильное чередование

На практике изделие применяется при частом переносе оборудования, когда при изменении фазировки возможно его повреждение или некорректная работа.

Яркий пример — компрессор винтового типа, неправильное подключение которого и включение на срок больше пяти секунд приводит к поломке дорогостоящего изделия.

Реле контроля фаз и напряжения позволяет определить следующие проблемы:

  • Обрыв любой из фаз;
  • Повышение или снижение напряжения выше (ниже) заданного уровня;
  • Нарушение фазировки (порядка подключения фаз);
  • Обрыв «нуля»;
  • Несимметрия I и U (здесь речь идет о перекосе фаз, когда угол между векторами значительно больше или меньше 120 градусов).

Принципиальная схема устройства показана ниже.

В некоторых реле предусмотрена возможность изменения уставок по верхнему и нижнему пределу U, а также T (времени) срабатывания.

Как правило, выходная контактная группа реле является «сухой». При этом в распоряжении есть два варианта — нормально замкнутые и разомкнутые. В некоторых моделях предусмотрены элементы, работающие на индукционном принципе.

Индукционный регулятор напряжения и фазорегулятор

РЕФЕРАТ

Тема: “АСИНХРОННЫЕ МАШИНЫ СПЕЦИАЛЬНОГО НАЗНАЧЕНИЯ”

РАЗРАБОТАЛ: студент группы 3РЭС

• Асинхронные машины специального назначения

Индукционный регулятор напряжения и фазорегулятор

Индукционный регулятор напряжения (ИР) представляет собой асинхронную машину с фазным ротором, предназначенную для плавного регулиро­вания напряжения. Рассмотрим работу трехфазного ИР, получившего преимущественное применение. Ротор ИР заторможен посредством червячной пере­дачи, которая не только удерживает его в заданном положении, но и позволяет плавно поворачивать его относительно статора. Обмотки статора и ротора в ИР имеют автотрансформаторную связь (рис. 17.1, а), поэтому ИР иногда называют поворотным авто­трансформатором.

Напряжение сети U1подводится к обмотке ротора, при этом ротор создает вращающееся магнитное поле, наводящее в обмотке ротора ЭДС

Фазовый сдвиг этих ЭДС относительно друг друга зависит от взаимного пространственного по­ложения осей обмоток статора и ротора, определяе­мого углом α. При α = 0 оси обмоток совпадают, вращающееся поле одновременно сцепляется с обеими обмотками и ЭДС


=
­­+
(17.1)

При повороте ротора концы векторов

,

ИР применяются во всех случаях, где необходима плавная ре­гулировка напряжения, например в лабораторных исследованиях.

Фазорегулятор (ФР). Предназначен для изменения фазы вто­ричного напряжения относительно первичного при неизменном вторичном напряжении. В отличие от ИР об­мотки ротора и статора ФР электрически не соединены друг с дру­гом, т. е. имеют транс­форматорную связь (см. рис. 17.1, б),поэтому ФР иногда называют поворотным транс­форматором.

Изменение фазы вторичного напряже­ния осуществляется поворотом ротора от­носительно статора. Первичной обмоткой в ФР обычно является обмотка статора. Фазорегуляторы приме­няются в устройствах автоматики (для фазового управления) и измерительной технике

( для проверки ваттметров и счетчиков).

Рис. 17.1. Схемы соединения индукционного

регулятора напряжения (а) и фазорегулятора (б)

голоса

Рейтинг статьи

Фазорегулятор распределительного вала (двигатели F4R, K4M) Рено Меган / Renault Megane 2

 

Фазорегулятор предназначен для изменения фаз газораспределения.
Рисунок 2.228. Фазорегулятор распределительного вала: 1 – фазорегулятор
Для улучшения наполнения цилиндров рабочей смесью на всех режимах двигатели К4М и F4R оборудованы фазорегулятором распределительного вала впускных клапанов (Рисунок 2.228).
Смещение момента закрытия впускных клапанов оптимизирует наполнение цилиндров в зависимости от частоты вращения коленчатого вала. В результате повышается крутящий момент на режиме средних нагрузок и мощность при высокой частоте вращения коленчатого вала.
В этих условиях более позднее закрытие впускных клапанов обеспечивает поступление дополнительной порции топливной смеси за счет высокой скорости ее движения.
Напротив, при невысокой частоте вращения инерция заряда невелика. Более раннее закрытие выпускных клапанов позволяет избежать плохого наполнения цилиндров и потерю крутящего момента вследствие вытеснения части свежего заряда смеси.
Чем выше частота вращения коленчатого вала, тем позднее должно происходить закрытие впускных клапанов.

Режимы работы

Рисунок 2.229. Электромагнитный клапан фазорегулятора: 1 – клапан
Масло подается к фазорегулятору посредством электромагнитного клапана, установленного на головке блока цилиндров (Рисунок 2.229).
На клапан подается электропитание в виде переменного сигнала степени циклического открытия (амплитудой 12 в и частотой 250 Гц), что позволяет подавать масло в механизм, и таким образом, изменять угол сдвига фаз.
ЭБУ питает электромагнитный клапан переменным сигналом степени циклического открытия, величина которого пропорциональна требуемому смещению фаз.
Фазы плавно изменяются от 0 до 43° по углу поворота коленчатого вала.
Управление электромагнитным клапаном фазорегулятора распределительного вала происходит при соблюдении следующих условий:
– отсутствие неисправности датчика частоты вращения коленчатого вала;
– отсутствие неисправностей датчиков положения распределительных валов;
– отсутствие неисправностей в системе впрыска;
– после запуска двигателя;
– при работе двигателя не на холостом ходу при отпущенной педали акселератора;
– получено пороговое значение профиля впрыска, устанавливаемого с учетом нагрузки и частоты вращения коленчатого вала;
– температура охлаждающей жидкости в пределах 10–120 °С;
– повышенная температура масла в двигателе.
Резервные режимы:
– возврат фазорегулятора в исходное положение;
– нулевое смещение фаз.
 При блокировке электромагнитного клапана в открытом положении двигатель неустойчиво работает на холостом ходу, давление во впускном коллекторе повышено, также отмечается повышенная шумность двигателя.

Работа и управление фазорегулятором двигателя F4R

Рисунок 2.230. Электромагнитный клапан фазорегулятора: 1 – клапан
Фазорегулятор отключен или управляется ЭБУ системы впрыска посредством электромагнитного клапана, установленного на крышке головки блока цилиндров (Рисунок 2.230).
При частоте вращения коленчатого вала в пределах 1500–4300 мин–1 ЭБУ подает напряжение питания на электромагнитный клапан.
При превышении 4300 мин–1 питание электромагнитного клапана прекращается. При этом положение механизма фазорегулятора способствует наполнению цилиндров при высокой частоте вращения коленчатого вала. В этом положении запорный плунжер блокирует механизм.
  При частоте вращения до 1500 мин–1 напряжение питания не подается на электромагнитный клапан. Механизм заблокирован плунжером. С момента подачи питания на электромагнитный клапан при частоте вращения коленчатого вала более 1500 мин–1 под действием давления масла запорный плунжер отходит и высвобождает механизм.
В исходном положении электромагнитный клапан закрыт. Клапан открывает проход масла для управления фазорегулятором при соблюдении следующих условий:
– отсутствие неисправности датчика частоты вращения коленчатого вала;
– отсутствие неисправностей датчиков положения распределительных валов;
– отсутствие неисправностей в системе впрыска;
– после запуска двигателя;
– двигатель работает не на холостом ходу;
– напряжение аккумуляторной батареи выше 11,4 В;
– температура охлаждающей жидкости выше 30 °С;
– частота вращения двигателя составляет 1500–4300 мин–1;
– нагрузка больше 87% (примерно 900 Мбар).
 При блокировке электромагнитного клапана в открытом положении двигатель неустойчиво работает на холостом ходу, давление во впускном коллекторе повышено.

Газораспределительный механизм

Впуск рабочей смеси, и выпуск отработанных газов осуществляется клапанным механизмом. Каждый рабочий цилиндр оборудован двумя впускными и двумя выпускными клапанами. Для управления клапанами предусмотрено два распределительных вала кулачкового типа. Привод распределительных валов ременной, осуществляется от шкива, установленного на коленчатом валу двигателя.

Для предотвращения попадания смазки в цилиндр при работе силового агрегата клапана оборудованы маслосъемными колпачками. Для улучшения газораспределения производителем предусмотрены гидрокомпенсаторы.

Переключение фаз

Устройство системы VTEC

Такими возможностями обладает, например, Variable Valve Timing and Lift Electronic Control (VTEC), созданная инженерами Honda. Она способна расширять фазы на высоких оборотах путем изменения высоты подъема клапана. Со времени своего создания система претерпела несколько модернизаций. Здесь рассмотрим ее третью версию – систему DOHC i-VTEC. Она представляет собой симбиоз системы VTEC с системой VTC (Variable Timing Control). Именно наличие VTC добавило в обозначение системы букву «i».

Основой VTEC любого поколения является использование трех кулачков на каждую пару клапанов. Коромысел, соответственно, тоже три. Два крайних коромысла расположены непосредственно над клапанами, третье – между ними. Два крайних кулачка низкопрофильные и предназначены для обеспечения оптимальной работы на низких и средних оборотах. Усилие от среднего высокопрофильного кулачка передается на клапана только на высоких оборотах.

Работы системы VTEC

Для тех, кто не изучал английский:-)
At low engine speeds – При низких оборотах двигателя
At higher engine speeds – При высоких оборотах двигателя
Low valve lift – Низкий подъем клапанов
High valve lift – Высокий подъем клапанов
Disengaged – Отключено
Synchronizing pin – Синхронизирующий штифт

Как это происходит? Примерно до 5500 об/мин газораспределение обеспечивается крайними кулачками через свои коромысла. Среднее коромысло хоть и приводится в действие кулачком, но на клапана никакого воздействия не оказывает – система VTEC отключена. При дальнейшем увеличении частоты вращения включается система VTEC. Блок управления отдает команду и управляемый давлением масла штифт, сдвигаясь, замыкает между собой все три коромысла. Таким образом, они составляют единое среднее коромысло, на которое воздействует только средний кулачок. В результате высота подъема клапанов, а вместе с ней и ширина фаз возрастает, обеспечивая лучшее наполнение и очистку цилиндров. Система VTEC устанавливается и на впускной, и на выпускной распредвалы.

А что же система VTC? Она, в отличие от VTEC, работает во всем диапазоне оборотов, регулируя момент открытия впускных клапанов в зависимости от нагрузки на двигатель. Конструктивно она аналогична описанной выше системе VVT, то есть представляет собой фазовращатель, установленный на впускном распредвалу. VTC позволяет дополнительно увеличить мощность, крутящий момент, снизить расход топлива и вредные выхлопы, изменяя фазы газораспределения путем доворачивания распредвала в нужную сторону.

Системы, подобные VTEC, выпускаются и другими производителями, например Toyota (VVTL-i), Mitsubishi (MIVEC). Их недостатком является ступенчатое переключение фаз между узкими и широкими. А в идеале хотелось бы достичь плавного регулирования, позволяющего более точно подстроиться под режим работы двигателя.

Порядок выполнения замены

Процедура смены моторной смазки в Рено Меган 2 проводится по тому же принципу, что и в других автомобилях. После того как двигатель прогрели до рабочей температуры, нужно дать ему остыть 5 – 7 минут, затем загнать машину на яму или установить на подъёмник, после чего приступаем к процессу замены:

  1. Снимаем защиту мотора, открываем крышку заливной горловины для доступа воздуха, благодаря чему жидкость будет лучше стекать. 
  2. Предварительно подставив ёмкость для отработки, откручиваем пробку сливного отверстия при помощи ключа, ждём, пока смазка стечёт.
  3. Демонтируем фильтр специальным съёмником. 
  4. Тщательно очищаем поверхность посадки, перед тем как продолжить процедуру.
  5. Смазываем резиновую прокладку, заливаем небольшое количество нового масла в новый фильтрующий элемент, чтобы он хорошо пропитался, затем устанавливаем его вручную.
  6. Меняем уплотнитель сливной пробки и закручиваем её.
  7. Теперь переходим к заливу нового масла, делаем это медленно, весь рекомендуемый объём сразу не льём. Контролируем уровень жидкости, ориентируясь по измерительному щупу, доливаем по необходимости до нужной отметки. 
  8. Закрываем пробку заливного отверстия, возвращаем защиту на место.
  9. Спустя 10 – 15 минут желательно снова провести проверку уровня смазки, отрегулировав его до показателей нормы, если обнаружились отклонения. Проверяем мотор на предмет утечки. Теперь замена масла в двигателе Рено Меган 2 считается завершённой.

Как поменять моторное масло, обязан знать каждый автомобилист, ведь не всегда есть возможность обратиться к специалистам автосервиса, а затягивать с работами по замене не следует. К тому же процедура проста и не требует особенных навыков, поэтому чтобы правильно её осуществить, нужно просто придерживаться основных рекомендаций по проведению работ.

Системы изменения фаз газораспределения

система поворота распредвала;

кулачки распредвала с различным профилем;

система изменения высоты подъема клапанов;

система на основе гидроуправляемой муфты;

Работа указанных выше систем основывается на небольшом повороте распредвала по ходу его вращения. Такой способ позволяет добиться раннего открытия клапанов сравнительно с их базовым начальным положением.

Поворот распредвала осуществляется при помощи электроники управления и гидравлики, а сама система чаще всего затрагивает только впускные клапаны. Рост оборотов ДВС приводит к тому, что фазовращатель осуществляет проворот распредвала по ходу его вращения, впускные клапана открываются раньше и цилиндры намного более эффективно наполняются рабочей смесью в режиме высоких оборотов.

Данная муфта конструктивно включает в себя:

ротор, который соединен с распредвалом;

корпус, которым выступает шкив привода распредвал.

В определенные полости, которые расположены между ротором и корпусом-шкивом, попадает моторное масло из системы смазки ДВС. Масло в муфту подается по особым каналам. Когда моторное масло заполняет одну или другую полость муфты, осуществляется поворот ротора по отношению к корпусу. Этот поворот ротора означает, что и распределительный вал будет повернут на необходимый угол.

Чаще всего местом установки гидроуправляемой муфты становится привод того распределительного вала, который отвечает за работу впускных клапанов. Встречаются также конструкции ДВС, когда подобные муфты-фазовращатели стоят как на впускном распредвале, так и на выпускном. Данное решение позволяет шире и эффективнее регулировать параметры работы ГРМ на впуске и выпуске, но усложняет механизм.

Понравилась статья? Поделиться с друзьями:
Автобасс
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: