Регулятор давления
Регулятор давления корректирует давление тормозной жидкости в заднем контуре в зависимости от загрузки автомобиля, что облегчает работу гидроагрегата АБС и предотвращает занос автомобиля при интенсивном торможении в случае отказа АБС или ее отсутствии.
Рисунок 7.6:
Регулятор давления:
- I, II – полости регулятора;
- С=28-32 мм (для автобусов 4х2);
- С=36-40 мм (для автобусов 4х4);
- С=33-37 мм (для автомобилей скорой медицинской помощи (СМП) 4х2);
- С=42-48 мм (для СМП 4х4);
- С=13-17 мм (для остальных автомобилей);
- нажимной рычаг;
- штифт;
- фиксирующий болт;
- ось нажимного рычага;
- гайка;
- ось;
- корпус;
- кронштейны регулятора;
- кронштейны регулятора;
- контргайка;
- регулировочный болт;
- нагрузочная пружина;
- пружина;
- гильза поршня;
- управляющий конус;
- прижимная пружина;
- шарик;
- упорная скоба;
- возвратная пружина;
- втулка;
- поршень;
- защитный чехол;
- кронштейн моста;
- стойка;
- пружинная шайба
Регулятор крепится к левому лонжерону рамы через кронштейн 8 (рис. 7.6), а через нагрузочную пружину 12 и стойку 24 связан с задним мостом автомобиля. Нагрузочная пружина верхним коротким концом через нажимной рычаг 1 действует на наружный конец поршня 21, а длинным концом через стойку 24 соединена с кронштейном 23, приваренным к заднему мосту автомобиля.
Регулятор давления состоит из корпуса 7, в который установлена гильза 14 и ввернута втулка 20.
Ступенчатый поршень 21 перемещается во втулке и гильзе, при этом в полости I, постоянно связанной с главным цилиндром, находится часть поршня малого диаметра, а в полости II, постоянно связанной с колесными цилиндрами задних тормозных механизмов – большего диаметра. На поршне закреплен управляющий конус 15, который воздействует на шарик 17, находящийся в отверстии гильзы 14. Шарик удерживается пластинчатой пружиной 16.
Нагрузочная пружина 12, усилие которой прямо пропорционально загрузке автомобиля, определяет начало включения регулятора, а разность диаметров поршней – корректировку давления жидкости, поступающей к задним тормозным механизмам.
До вступления в действие регулятора значения давления жидкости в полостях I и II одинаковы, так как под действием пружины 19 и нагрузочной пружины 12 поршень 21 через упорную скобу 18 прижат к гильзе 14, а шарик 17 поднят от седла управляющим конусом 15, что и обеспечивает свободный проход жидкости из полости I в полость II.
При торможении значения давления жидкости в полостях I и II будут одинаковы до тех пор, пока сила давления на больший диаметр рабочего поршня 21 (полость II) не превысит сумму сил пружин 12 и 19 и давления жидкости на площадь, образованную между большим и малым диаметрами поршня (полость I). В этом случае поршень переместится влево (по рисунку), управляющий конус 15 отойдет от шарика 17, который переместится в седло гильзы 14, чем разобщит полость I с полостью II. С этого момента давление жидкости в полости II, поступающей к задним тормозным механизмам, будет расти медленнее и при этом будет меньше, чем в полости I.
При снятии усилия с тормозной педали давление в полости I упадет, поршень 21 возвратится в исходное положение (на рисунке вправо), а управляющий конус, подняв шарик, откроет доступ жидкости из полости II в полость I.
Гильза 14 поршня под действием давления в полости II передвинется влево (по рисунку), и шарик 17 отойдет от седла под действием управляющего конуса 15, открыв доступ жидкости из полости II в полость I.
После падения давления жидкости гильза поршня 14 и поршень 21 под действием возвратной шайбы 25 и пружины 19 вернется в исходное положение.
Замена регулятора холостого хода ГАЗ-3110
На двигателе ЗМЗ-4062 нет привычной, как в карбюраторе, системы холостого хода
Функцию каналов и жиклера холостого хода выполняет микропроцессорный блок управления с помощью форсунок топливоподачи и регулятора добавочного воздуха.
Регулятор (РХХ-60 или 0280 140 545) установлен на ресивере системы впуска воздуха.
Он представляет собой клапан с электроприводом, регулирующий подачу воздуха во впускную систему в обход дроссельной заслонки, что обеспечивает поддержание заданных оборотов холостого хода на различных режимах работы двигателя (пуск, прогрев, торможение двигателем, появление дополнительной нагрузки от навесного оборудования).
По сути – это регулятор холостого хода.
При отказе регулятора или неисправности в его цепи блок управления включит лампу сигнализатора КМСУД, а в память запишет соответствующий код неисправности.
С неисправным регулятором двигатель на холостом ходу может глохнуть после пуска и работать на повышенных оборотах.
Если из-за механических повреждений или загрязнения поворотная заслонка станет заедать, то двигатель будет нестабильно работать на холостом ходу.
Проверка регулятора добавочного воздуха
Выключаем зажигание и снимаем минусовую клемму с аккумуляторной батареи.
1. Шилом или тонкой отверткой отщелкиваем зажим колодки и отсоединяем разъем регулятора.
2. Омметром измеряем, сопротивление двух обмоток регулятора, для чего подсоединяем один щуп прибора к центральному выводу, а другой – поочередно к крайним.
У исправного регулятора сопротивление каждой обмотки должно находиться в пределах 10–14 Ом.
3. Сняв регулятор с двигателя, надеваем на центральный вывод обрезок полихлорвиниловой трубки и вставляем в нее конец оголенного провода.
4. Соединяем центральный вывод с плюсом аккумуляторной батареи, минус – поочередно с крайними.
В одном случае заслонка должна полностью открыться, в другом – закрыться
Если этого не происходит, слегка потрясите регулятор, чтобы убедиться, что заслонка не заедает.
Неисправный регулятор заменяем.
Снятие регулятора добавочного воздуха
1. Отверткой ослабляем хомут
2. Снимаем шланг подвода воздуха.
3. Отверткой ослабляем хомут нижнего шланга.
4. Ключом на 10 отворачиваем два болта крепления регулятора к ресиверу впускной системы.
5. Снимаем регулятор в сборе с кронштейном, вынув нижний патрубок регулятора из шланга.
6. Снимаем с регулятора стальной хомут и резиновую трубку.
7. Устанавливаем регулятор в обратной последовательности
При монтаже ориентируемся по диаметру патрубков регулятора – подводящий больше и должен располагаться сверху
Регулятор давления ГАЗ 2705
Рис. 8.4. Регулятор давления: С = 28-32 мм (для автобусов), 13-17 мм (для автофургонов); 1 — нажимной рычаг; 2 — штифт; 3 — фиксирующий болт; 4 — ось нажимного рычага; 5 — гайка; 6 — ось; 7 — корпус; 8 и 9 — кронштейны регулятора; 10 — контргайка; 11 — регулировочный болт; 12 — нагрузочная пружина; 13 — пружина; 14 — гильза поршня; 15 — управляющий конус; 16 — прижимная пружина; 17 — шарик; 18 — упорная скоба; 19 — возвратная пружина; 20 — втулка; 21 — поршень; 22 — защитный чехол; 23 — кронштейн моста; 24 — стойка; 25 — пружинная шайба |
Регулятор давления (рис. 8.4) корректирует давление тормозной жидкости, поступающей к тормозным механизмам задних колес, в зависимости от загрузки автомобиля, что предотвращает занос автомобиля при интенсивном торможении.
Регулятор крепится к левому лонжерону рамы через кронштейн 8, а с помощью нагрузочной пружины 12 и стойки 24 связан с задним мостом автомобиля. Нагрузочная пружина верхним коротким концом через нажимной рычаг 1 действует на наружный конец поршня 21, а длинным концом через стойку 24 соединена с кронштейном 23, приваренным к заднему мосту автомобиля.
Регулятор давления состоит из корпуса 7, в который установлена гильза 14 и ввернута втулка 20.
Ступенчатый поршень 21 перемешается во втулке и гильзе, при этом в полости I, постоянно связанной с главным цилиндром, находится часть поршня малого диаметра, а в полости II, постоянно связанной с колесными цилиндрами задних тормозных механизмов, — большего диаметра. На поршне закреплен управляющий конус 15, который воздействует на шарик 17, находящийся в отверстии гильзы 14. Шарик удерживается в отверстии пластинчатой пружиной 16.
Нагрузочная пружина 12, усилие которой прямо пропорционально загрузке автомобиля, определяет начало включения регулятора, а разность диаметров поршней — корректировку давления жидкости, поступающей к задним тормозным механизмам.
До вступления в действие регулятора давление жидкости в полостях I и II одинаково, так как под действием пружины 19 и нагрузочной пружины 12 поршень 21 через упорную скобу 18 прижат к гильзе 14, а шарик 17 поднят от седла управляющим конусом 15, что и обеспечивает свободное прохождение жидкости из полости I в полость II.
При торможении вначале давление жидкости в полостях I и II будет одинаково до тех пор, пока сила, полученная от давления на большую часть поршня 21 (полость II), не будет больше суммы сил, полученных от действия пружин 12 и 19 и от давления жидкости на площадь, образованную между большим и малым диаметрами поршня (полость I). В этом случае поршень переместится влево (по рисунку), управляющий конус 15 отойдет от шарика 17, который переместится в седло гильзы 14, чем разобщит полость I с полостью II. С этого момента давление жидкости в полости II, поступающей к задним тормозным механизмам, будет расти медленнее и при этом будет меньше, чем в полости I.
При снятии усилия с тормозной педали давление в полости I падает, поршень 21 возвратится в исходное положение (на рисунке вправо), а управляющий конус, подняв шарик, откроет доступ жидкости из полости II в полость I.
Гильза 14 поршня под действием давления в полости II передвинется влево (по рисунку), и шарик 17 отойдет от седла под действием управляющего конуса 15, открыв доступ жидкости из полости II в полость I.
После падения давления жидкости гильза поршня 14 и поршень 21 под действием возвратной пружинной шайбы 25 и пружины 19 вернутся в исходное положение.
Видео про «Регулятор давления» для ГАЗ 2705
Замена регулятора давления топлива на ГАЗ 405/406
Замена датчика давления ГАЗель
Газель ремонт.Топливный насос фильтр.Реанимация.Восстановление
Газель глохнет и плавают обороты на холостом ходу – Защита должников
Почему на холостом ходу плавают обороты на ваз-2112 инжектор 16 клапанов
ДМРВ) Лада 2110 Он, как и клапан вентиляции картера, может в процессе длительной эксплуатации покрываться грязной масляной пленкой, что, в конце концов, приводит к его поломке.
Довольно редко в ДМРВ ломается термоанемометр — элемент, ответственный за измерения объемов воздуха, поступающих в камеру сгорания двигателя.
ЭБУ в этом случае не получает корректных данных о массовом расходе воздуха и требует его подачи в цилиндры, что отзывается на скачках оборотов мотора.
Пятая причина – некорректная работа дроссельной заслонки, функция которой состоит в регулировании давления воздуха, подающегося в цилиндры мотора. дроссельная заслонка Она может заклинивать по двум причинам: на внутренней поверхности «пятака» заслонки появляется масляный налет, не дающий заслонке нормально закрываться и открываться, а также из-за неисправности привода дроссельной заслонки.
Не стоит исключать проблемы в системе охлаждения. Если машина глохнет на холостых оборотах, проверьте состояние термостата. При неисправном клапане механизм не дает двигателю быстро прогреться до рабочих температур. В летнее время машина часто кипит.
Подробно о впускной системе Поскольку двигателю для работы нужен не только бензин, но и кислород, проблемы с оборотами касаются впускного воздушного коллектора. Такие неприятности происходят из-за подсоса воздуха в месте, что идет после фильтра.
В результате датчик расходомера воздуха не в состоянии контролировать процесс, и машина глохнет на холостых оборотах. Инжектор часто оборудуется ДМРВ
Не стоит обходить его вниманием
403 — доступ запрещён
Внимание
Если в машине нет тахометра, то плавающие обороты можно уловить на слух: рокот двигателя то возрастает, то уменьшается. А еще – по нарастающим и ослабевающим вибрациям, проникающим в салон машины из моторного отсека.
Как правило, нестабильные обороты двигателя проявляются на холостом ходу. Но и на промежуточных оборотах работы мотора можно зафиксировать провалы или взлеты стрелки тахометра – это характерно для дизельных двигателей.
Рассмотрим эти два случая отдельно, чтобы понять, по каким причинам эти явления происходят. Скачки оборотов на холостом ходу Плавающие обороты на холостом ходу наиболее часто проявляются на инжекторных двигателях.
Связано это с особенностью регулирования работы системы холостого хода электронным блоком управления двигателя (ЭБУ).
Авто-помощь
Важно
В этом случае рекомендуем не заклеивать ее изолентой, а заменить изношенный шланг на новый. 2. Замена регулятора холостого хода. Состояние РХХ проверяется при помощи мультиметра, которым замеряем его сопротивление.
Если мультиметр показывает сопротивление в диапазоне от 40 до 80 Ом, то регулятор вышел из строя и его придется заменить. 3. Чистка клапана вентиляции картера. Здесь не обойтись без разборки масляного картера – только так можно добраться к его вентиляции и извлечь клапан. Промываем его в керосине или любом средстве для очистки деталей двигателя от следов масляного шлама. Затем просушиваем клапан и устанавливаем его на место. 4. Замена датчика массового расхода воздуха. ДМРВ – деталь деликатная и в большинстве случаев ремонту не подлежит. Так что если причиной плавающих оборотов на холостом ходу стал именно он, его лучше заменить, а не ремонтировать.
Плавают обороты на газу — причины и способы их устранения
Электронные «мозги» автомобиля постоянно считывают информацию о работе холостого хода, и если она нарушается, то дают команду ответственным за корректное функционирование системы датчикам исправить положение.
Нарушаться работа холостого хода может по причине попадания лишнего воздуха в топливную систему, а конкретно – в цилиндры двигателя. В таком случае датчик массового расхода воздуха сигнализирует ЭБУ о поступлении в камеру сгорания излишка воздуха.
Волга газ клуб
У всех перечисленных выше причин появления нестабильных оборотов двигателя имеется несколько последствий: повышенный расход топлива, выброс в атмосферу выхлопных газов с высоким содержанием СО, износ элементов топливной системы и системы подачи воздуха двигателя.
Чтобы не допустить этого, необходимо периодически проверять работу перечисленных выше систем и датчиков, а если беда все же случилась, и обороты «лихорадит» — немедленно чинить все поломки. Исправляем плавающие обороты мотора 1. Подсос воздуха в цилиндры двигателя.
Для этого можно снимать каждый шланг в отдельности и продувать его при помощи компрессора или насоса (трудоемкий процесс), а можно обработать шланги WD-40. На том месте, где «вэдэшка» быстро испарится, можно будет обнаружить трещину.
Неисправности впускного коллектора
Общие проблемы с впускным коллектором включают в себя:
- подсос воздуха;
- утечки охлаждающей жидкости или масла;
- снижение потока из-за накопления углерода;
- проблемы с впускными регулирующими заслонками.
В некоторых двигателях впускной коллектор может корродировать или растрескиваться, вызывая утечку вакуума или охлаждающей жидкости. Треснувший коллектор должен быть заменен, если его нельзя безопасно отремонтировать.
Утечки охлаждающей жидкости
В некоторых автомобилях во впускном коллекторе имеются каналы для охлаждающей жидкости, которые могут протекать из-за плохих прокладок или повреждений. Например, эта проблема была довольно распространенной в старых двигателях GM V6.
Если коллектор не поврежден и сопрягаемые поверхности находятся в хорошем состоянии, для решения проблемы обычно достаточно замены прокладок или повторного уплотнения коллектора. Если коллектор поврежден — его необходимо заменить.
Подсос воздуха
Изношенные прокладки впускного коллектора (на фото) часто вызывают утечки вакуума. Это может привести к неровному холостому ходу, остановке, а также к включению индикатора Check Engine. При этом на более высоких оборотах двигатель может работать нормально.
Например, коды неисправностей OBD-II P0171 и P0174 часто вызваны утечками во впускном коллекторе. Если подсос вызван плохими прокладками, ремонт включает снятие впускного коллектора, проверку и очистку монтажных поверхностей и замену прокладок. Посмотрите, например, это видео замене прокладок впускного коллектора на Рено Меган:
Часто источником подсоса воздуха может быть треснувший вакуумный шланг или патрубок, соединяющий впускной коллектор. В этом случае сломанный вакуумный шланг или патрубок необходимо заменить.
Иногда впускной коллектор может деформироваться, вызывая неправильное уплотнение прокладок. Деформированный впускной коллектор необходимо заменить. В некоторых автомобилях утечку вакуума можно определить по шипящему звуку из-под капота.
Отложения углерода
В некоторых двигателях, например, Volkswagen TDI Diesel, отложения углерода внутри впускного коллектора могут вызвать недостаток мощности, пропуски зажигания, дым и увеличение расхода топлива.
Проблемы с отложением углерода чаще встречаются в двигателях с турбонаддувом. Одним из основных симптомов является отсутствие тяги. Забитый впускной коллектор может потребоваться снять и почистить вручную.
В некоторых случаях замена впускного коллектора может оказаться более разумным решением, чем его очистка. Есть много скрытых областей внутри коллектора, которые не могут быть очищены.
Проблемы с заслонками изменения геометрии впуска
Регулирующие заслонки обычно приводятся в действие электрическими или вакуумными исполнительными механизмами. Часто резиновая диафрагма внутри вакуумного привода начинает протекать, и привод перестает работать.
Вакуумный исполнительный механизм легко проверить с помощью ручного вакуумного насоса. Если вакуумный привод пропускает, его необходимо заменить. Вместо насоса можно использовать медицинский шприц.
Блок управления двигателя (ЭБУ) запускает вакуумные приводы, включая и выключая небольшие электромагнитные клапаны контроля вакуума. Эти соленоиды также часто выходят из строя. Соленоиды тоже легко проверить с помощью ручного вакуумного насоса.
Другой распространенной проблемой является случай, когда клапан изменения геометрии впуска залипает из-за накопления углерода или когда клапан деформирован. В этом случае коллектор необходимо заменить.
Например, проблемы с впускным коллектором (регулирующим клапаном) часто встречаются в некоторых двигателях VW / Audi. Volkswagen продлил гарантию на впускной коллектор для определенных автомобилей Audi / Volkswagen 2008-2011 модельного года с двигателями 2.0 TFSI с кодами двигателей CBFA и CCTA.
Во многих автомобилях BMW неисправный клапан DISA, установленный во впускном коллекторе, также является общей проблемой. Посмотрите это видео о проверке клапана DISA в BMW:
Назначение и расшифровка аббревиатуры
Расходомеры, они же волюметры или ДМРВ (не путать с ДМРТ и ДВРМ), расшифровываются как датчики массового расхода воздуха, устанавливаются в автомобилях на дизеле или бензиновых ДВС. Место расположения данного датчика найти несложно, поскольку он контролирует подачу воздуха, то и искать его следует в соответствующей системе, а именно, после воздушного фильтра, на пути к дроссельной заслонке (ДЗ).
Место установки ДМРВ на Газель 405
Подключение устройства осуществляется к блоку управления ДВС. В тех случаях, когда ДМРВ находится в неисправном состоянии или отсутствует, грубый расчет может быть произведен исходя из положения ДЗ. Но при таком способе измерения нельзя обеспечить высокую точность, что незамедлительно приведет к перерасходу топлива. Это еще раз указывает на ключевую роль расходометра при расчете подаваемой через форсунки топливной массы.
Помимо информации с ДМРВ, блок управления также обрабатывает данные, поступающие со следующих устройств: ДРВ (датчик распределительного вала), ДД (измеритель детонации), ДЗ, датчик температуры системы охлаждения, измеритель кислотности (лямбда зонд) и т.д.
Доступные методы увеличения подачи воздуха
От количества попадающего воздуха зависит мощность двигателя. Установка турбины – метод радикальный, однако существуют более простые и дешевые способы:
Установка воздушного фильтра нулевого сопротивления
К данному способу относятся скептически, но эффективность ФНС доказана. Оправдана установка подобного фильтра только в случае комплексного тюнинга, но и без того прибавляет скромных 1-3% мощности за счет снижения сопротивления, а значит, увеличения объема воздуха в камере сгорания.
Холодный впуск
Существуют готовые комплекты холодного впуска. Не на всех автомобилях воздухозаборник способен забирать холодный воздух, температура подкапотного пространства не позволяет.
Конструкция холодного впуска дает возможность попадать в коллектор холодному воздуху, а значит в цилиндры попадает больше воздуха – горение смеси будет более эффективно.
Установка впускного коллектора с иной геометрией
Для автомобилей ВАЗ предусмотрены коллектора под разные потребности: с короткими каналами — мотор будет «верховым», с длинными каналами обеспечить достаточный крутящий момент с холостых до средних оборотов.
Схема топливоподачи
Электрическая помпа забирает топливо из бака, которое прокачивается под давлением через полость фильтра. Мотор нагнетательного прибора охлаждается потоком бензина. Правила эксплуатации автомобиля запрещают включение зажигания при пустом правом резервуаре. В конструкции топливной системы старого образца предусмотрена струйная помпа.
Бензин подается в рампу, которая оснащена форсунками, вставленными в полость впускного коллектора через резиновые уплотнительные кольца. В конструкции форсунок предусмотрены распылители, оснащенные электромеханическими клапанами, дозирующими количество подаваемого топлива. При передаче импульса от контроллера срабатывает игольчатый клапан, открывающий подачу бензина к распылительной головке. В моторах машин, выпущенных ранее 2007 г., имеется дополнительный клапан холостого хода, который подает воздух в обход дроссельного узла.
При отключенном зажигании топливная система не сообщается с атмосферой. Пары горючего поступают из правой емкости в левую, а затем скапливаются в адсорбере. После включения зажигания система становится негерметичной; пары бензина подаются во впускной коллектор.
В адсорбере находится клапан, через который поступает атмосферный воздух для выравнивания давления в баках (разрежение в емкостях возникает по мере расхода горючего).
Обзор элементов системы впуска двигателя
Резонатор
Представляет собой пластиковый воздухозаборник, который, как правило, установлен под фарами возле радиаторов. Патрубок устанавливается по ходу движения автомобиля, чтобы захватывался поток воздуха.
Конструкция воздухозаборника осуществлена таким образом, чтобы избежать попадания воды в цилиндры.
Корпус воздушного фильтра
Пластиковый короб, в котором устанавливается фильтр. Корпус максимально герметичен, обычно имеет отстойник для мусора.
Фильтр расположен во всей площади корпуса, в составе которого целлюлозная бумага с прорезиненными краями. Рассчитан фильтр таким образом, чтобы обеспечить необходимое сопротивление.
Дроссельный патрубок
Обычно представляет собой гофрированный патрубок. В гофре имеется отдельный патрубок, через который во впускной коллектор попадают картерные газы. К патрубку присоединяется ДМРВ, крепится хомутами с двух сторон во избежание подсоса неучтенного воздуха.
ДМРВ
Датчик имеет в своей основе платиновую проволоку и никелевую сетку в качестве чувствительного элемента. Работа датчика заключается в подсчете впускаемого воздуха, а полученная информация уже передается на электронный блок управления.
Получив данные от датчика массового расхода воздуха, блок управления уже знает, в каком количестве подать топливо.
Дроссельная заслонка
Дроссельная заслонка нужна для дозирования впускаемого воздуха, непосредственно влияющее на количество впрыскиваемого топлива.
За положением открытия заслонки отвечает электронный потенциометр ДПДЗ (датчик положения дроссельной заслонки). В зависимости от открытия заслонки корректируется количество подачи топлива.
Устанавливаемый либо на дросселе, либо на коллекторе, регулятор холостого хода (РХХ), отвечает за поток воздуха в обход закрытого дросселя в режиме холостого хода.
Впускной коллектор
Впускной коллектор равномерно распределяет воздух по цилиндрам, создавая необходимую геометрию потока, а также играет роль в смесеобразовании.
Может быть пластиковым или железным. У современных двигателей ресивер с изменяемой геометрией потока воздуха, а за геометрию отвечают двигающиеся шторки.
Расход топлива – по заводским нормам и реальный
По техническим паспортным данным расход топлива на скорости 60 км/час с двигателем ЗМЗ 4063 и ЗМЗ 4061 составляет 10,5 л, на скорости 80 км/час – 13 л. Но при контрольном замере не учитываются многие факторы:
- Загруженность авто;
- Погодные условия;
- Дорожная обстановка;
- Техническое состояние автомобиля.
В эти нормы можно уложиться, если автомобиль будет эксплуатироваться летом на сухой дороге, при этом без груза и в полностью исправном состоянии. Многое еще зависит от стиля езды. Чем резче водитель нажимает на газ, тем больше расходуется топливо. Зависит расход бензина также от его качества. Замечено, что топливо с более высоким октановым числом меньше расходуется. Поэтому для «Газели» предпочтительнее заливать горючее марки Аи-95 вместо Аи-92.
Таблица сравнения расхода топлива в различных модификациях автомобиля Газель
Источник
Состав топливной системы
Система питания двигателя внедорожника состоит из следующих конструктивных элементов, без которых работа мотора ЗМЗ-409 была бы невозможной. Ниже представлена схема питания двигателя ЗМЗ-409 внедорожника УАЗ Патриот Евро-3.
К основным конструктивным элементам системы питания двигателя относятся:
- Два топливных бака. Эти баки в конструкции имеют заливные горловины и сливные пробки. Таким образом, заправить внедорожник можно как с левой, так и с правой стороны. Чтобы сливать отстой из баков, имеются сливные пробки. Баки не имеют крана переключения, что предотвращает нарушение топливоподачи при несвоевременном срабатывании. Основным баком является правый, который при опустошении наполняется автоматически из левого. Подача горючего из левого бака в правый, обеспечивается за счет разрежения воздуха. Топливные пробки баков являются глухими, что позволяет обеспечивать герметичность конструкции и предотвращение испарения бензина или его утечку.
- Регулятор давления. Это устройство в виде перепускного клапана, посредством которого осуществляется поддержание постоянного перепада давления горючего между форсунками и трубопроводом.
- Топливный насос. Являет собой электрический механизм, посредством которого производится подача топлива из правого бака к мотору. Топливный насос оснащен фильтром тонкой очистки.
Указатель топлива и его проверка
Указатель топлива функционирует совместно со специальным датчиком, установленным в правом баке. Этот датчик являет собой реостат из нихрома. Благодаря поплавку, который оснащен движущимся элементом, осуществляется его перемещение по реостату. Когда же бензина в баке остается менее 5 литров, то загорается сигнальная лампа и указатель показывает нулевое значение.
Как действует датчик холостого хода ЗМЗ 405
В карбюраторных моторах проблему обогащения смеси при запуске ДВС решала пусковая ручка и регулировочные шайбы. С возникновением электронного зажигания этим занимается регулятор холостого хода в комплексе с остальными датчиками и ЭБУ. Его принцип работы выглядит следующим образом:
- калибровка РХХ производится контроллером ЭБУ автоматически после обнаружения этого датчика в системе;
- фактически РХХ является шаговым электродвигателем с конусной иглой в специальном отверстии обводного канала дроссельной заслонки;
- РХХ контакт никаких сигналов в «мозг» машины не передает, но получает их от контроллера, поэтому является не датчиком, а исполнительным устройством – электроклапаном;
- в свою очередь, бортовой компьютер «видит», что в топливной смеси недостаточно воздуха по сигналам ДМРВ, сравниваемым с сигналами ДПДЗ;
- на регулятор ХХ подается напряжение, игла выходит из канала, недостающее количество воздуха поступает в смесь для смешивания.
Датчики давления и аварийного давления масла двигателей ЗМЗ 405, 406, 409
Для того чтобы контролировать давление в системе смазки двигателей ЗМЗ 405, 406 и 409, предусмотрены два отдельных датчика. Один из них фиксирует величину давления, а второй реагирует на его критическое падение.
Характеристики, конструкция и принцип действия датчика давления масла
Датчик давления масла (ДДМ) служит для измерения давления смазки в системе. В силовых установках ЗМЗ используются датчики типа ММ358 со следующими характеристиками:
- рабочий элемент — реостат;
- номинальный ток, А — 0,15;
- рабочий диапазон, кгс/см 2 – 0–6;
- сопротивление при отсутствии давления, Ом — 159–173;
Датчик давления ММ358
Конструкция датчика давления ММ358 состоит из:
- корпуса со штуцером;
- мембраны;
- толкателя
- реостата;
- элементов привода реостата.
Основу конструкции датчика составляет реостат
Датчик ММ358 работает вместе с указателем давления, находящимся на панели приборов автомобиля. Он имеет электромеханическую конструкцию, реагирующую на изменение сопротивления датчика.
Датчик давления масла работает в паре с указателем, расположенным на приборной панели
Принцип действия датчика ММ358 следующий: когда двигатель не работает, давление в системе смазки отсутствует. Сопротивление датчика, в соответствии с его характеристиками, составляет 159–173 Ом. При запуске силового агрегата давление возрастает, и масло начинает воздействовать на мембрану, выгибая её внутрь корпуса. Прогибаясь, она через толкатель двигает передаточный рычаг, который, в свою очередь, перемещает ползунки реостата вправо, снижая сопротивление датчика. На это снижение реагирует указатель, перемещая стрелку вправо.
Характеристики, конструкция и принцип действия датчика аварийного давления масла
Аварийный датчик предназначен для информирования водителя о падении давления масла в системе до критических показателей. В силовых агрегатах ЗМЗ 405, 406 и 409 устанавливаются датчики аварийного давления масла типа ММ111Д или аналогичные, выпускаемые под каталожными номерами 2602.3829, 4021.3829, 6012.3829. Это устройства контактного типа, принцип действия которых основан на замыкании и размыкании контактов.
Характеристики датчика ММ111Д:
- рабочий элемент — диафрагма;
- номинальное напряжение, В — 12;
- срабатывание при давлении, кгс/см 2 – 0,4–0,8;
- размер посадочной резьбы, в дюймах – ¼.
Внутри корпуса устройства расположена подпружиненная диафрагма. К ней прикреплена контактная пластина, которая в нерабочем состоянии замкнута с корпусом (массой) датчика. Во время работы двигателя смазка под давлением поступает через специальное отверстие в корпус и отодвигает диафрагму. Контакты при этом размыкаются.
Главный элемент конструкции датчика — мембрана
Аварийный датчик давления работает в паре с сигнализатором, который расположен на панели приборов. Он выполнен в виде красной маслёнки. Когда мы включаем зажигание без запуска двигателя — маслёнка должна гореть. Это свидетельствует о том, что на датчик подаётся напряжение, а давление в системе отсутствует. Через 3–5 секунд после запуска двигателя давление в системе возрастает и достигает рабочих показателей. Масло воздействует на диафрагму, контакты размыкаются, а сигнализатор гаснет.
Регулятор давления кипения типа KVP
кипенияиспарителем
В системах с несколькими испарителями (работающими при различных давлениях кипения), регулятор KVP устанавливается за испарителем с наибольшим давлением кипения.
Каждый испаритель подпитывается с помощью соленоидного клапана, установленного на линии жидкости. Компрессор управляется с помощью реле давления. Максимальное давление на стороне всасывания соответствует наименьшей температуре в камере охлаждения.
В установках с запараллеленными испарителями и общим компрессором регулятор KVP устанавливают в общей линии всасывания, чтобы поддерживать в испарителях одинаковое давление.
Регулятор давления кипения снабжен штуцером для подсоединения манометра, который служит для настройки давления кипения. Регулятор KVP поддерживает постоянное давление в испарителе. Когда давление на входе в регулятор (давление кипения) возрастает, он открывается.
Замена впускного коллектора
Если впускной коллектор не может быть очищен или отремонтирован, его необходимо заменить. Впускной коллектор также меняется, если один из неисправных регулирующих клапанов не может быть заменен отдельно. В некоторых автомобилях это довольно просто, в других это требует больше труда.
При замене впускного коллектора важно очистить монтажную поверхность, заменить прокладки и затянуть болты коллектора в рекомендованном порядке в соответствии со спецификациями. Это особенно важно для двигателей V6 / V8
Предыдущая запись Катушка зажигания — виды, как работает, неисправности, как проверить
Следующая запись Предохранители — для чего нужны, как проверить, как заменить
Причины выхода из строя датчика положения
Время от времени от один элемент конструкции выходит из строя, то другой. Поэтому переживать не стоит, тем более, если машине уже больше 3 лет.
Причины поломки датчика ПДЗ:
- Между ползунком и резистивным слоем нет контакта. Это бывает при поломке наконечника, который делает задир на подложке. При этом датчик продолжает работать, но уже с неточными данными. Работает, пока резистивный слой полностью не сотрется. Сердечник в этом случае полностью выходит из строя.
- Линейное напряжение выходящего сигнала не увеличивается из-за изменения напыления в начале хода ползунка.
Для определения такой поломки еще не придумали индикатор, который сразу бы показывал это на панели приборов.