Режимы работы и замыкания в электроустановках

Режим холостого хода для трансформаторов

Таблица потерь

Особенности работы и применения резонансного трансформатора Тесла

Когда цепочка второй катушки разомкнута, она не использует какой-либо рабочей мощности. У той мощности, что потребляет первая, есть некоторый активный процент (он и представляет собой потери прибора), но доминирует реактивный, отвечающий за намагничивание и отдаваемый генератору. Что касается потерянной мощности, то большая ее часть затрачивается на процессы перемагничивания и генерацию вихрей токов магнитопровода. Из-за этого последний начинает перегреваться. Так как поток рассеяния не зависит от нагрузочного электротока, то мощностные потери имеются не только на холостом ходу, но и при подаче нагрузок. Еще некоторая часть потерь (очень небольшая) затрачивается на нагревание катушечного провода. Ее малое значение обусловлено показателями сопротивления проводка и тока холостого хода.

При напряжении 10/0,4 кВ величина потерь будет возрастать по мере увеличения мощности. Для номинального показателя мощности в 250 кВА потери будут равны 730 Вт, для 400 кВА – 1000 Вт, для 2500 кВА – 4200 Вт. По прошествии лет эксплуатации в магнитопроводе происходят процессы, увеличивающие объем потерь: изнашивается изоляция, изменяются структурные характеристики металла. Из-за этого теряться может до 50% мощности.

Принцип работы трансформатора в режиме холостого хода

Когда на обмотку прибора подают напряжение синусоиды, в ней возникает слабый ток, как правило, не превышающий 0,05-0,1 от номинального значения (это и есть холостой ток). Его создает обмоточная магнитодвижущая сила, именно из-за ее действия в замкнутом магнитопроводном элементе возникают ведущий магнитный поток (обозначается Ф) и рассеивающийся поток Ф1, замкнутый вокруг обмоточного тела. Значение магнитодвижущей силы равно произведению холостого тока на число обмоточных витков.

Как рассчитать потребление электрической энергии

Ведущий поток создает в приборе две электродвижущие силы: самоиндукционную у первой обмотки и взаимной индукции – у второй. Ф1 продуцирует у первой катушки ЭДС рассеяния. Она имеет очень небольшую величину, ведь создающий ее поток замыкается, по большей части, по воздушным массам, ведущий поток Ф – по магнитопроводу. Поскольку главный поток имеет гораздо большие масштабы, то и генерируемая им для первичной катушки электродвижущая сила тоже имеет намного большее значение.

Важно! Так как подаваемое напряжение имеет вид синусоиды, такие же характеристики имеют главный поток и создаваемые им обмоточные электродвижущие силы. Но по причине магнитного насыщения имеющийся в приборе поток непропорционален электротоку, создающему намагничивание, так что последний синусоидальным не будет

Практикуется замена его реальной кривой соответствующей ей синусоидой с таким же значением. Искажение тока связано с третьей гармонической составляющей (величина, определяемая вихревыми потоками и магнитопроводным насыщением).

Расчет КПД трансформатора

Энергетические потери в приборе, происходящие в медных и стальных комплектующих, обусловливают расхождение параметров выходной и потребительской мощности. То, насколько эффективен аппарат, можно узнать, вычислив его КПД: он равен частному выходного и потребляемого значений. Последнее равно сумме первого, потерь для стального сердечника (они узнаются при эксперименте холостого хода) и для медных элементов (вычисляются по замерам короткозамкнутого устройства).

Проведение опытов КЗ и ХХ – надежный способ вычислить эффективность трансформатора. Оно также позволяет определить объемы энергетических потерь и узнать, на какой компонент приходится большая их часть.

Как проверить сопротивление в РХХ посредством мультиметра

Чтобы выяснить, какое сопротивление присутствует, можно воспользоваться мультиметром

Для этого важно выполнить следующие шаги:. • обеспечить доступ к РХХ. Для этого необходимо просмотреть инструкцию, прилагаемую к автомобилю

В руководстве по ТО должна быть подробная информация о местоположении данной комплектующей;

Для этого необходимо просмотреть инструкцию, прилагаемую к автомобилю. В руководстве по ТО должна быть подробная информация о местоположении данной комплектующей;

• обеспечить доступ к РХХ. Для этого необходимо просмотреть инструкцию, прилагаемую к автомобилю. В руководстве по ТО должна быть подробная информация о местоположении данной комплектующей;

• отсоединить клапан. Найти электросоединение и отключить клапан РХХ;

• демонтаж клапана с ТС. Лучше всего выполнять порядок действий, описанный в руководстве по ТО авто. Это поможет выполнить процедуру без механических повреждений;

• проверка клапана. Для начала осуществить визуальный осмотр места установки, присутствуют ли скопления углерода, коррозии, пыли и грязи. Осмотреть штифт и место, где установлен клапан на наличие повреждений. Выполнить процедуру перед тем, как начать отсоединение;

• проверка сопротивления. Использовать спецификацию, которая должна быть указана в технической документации к транспортному средству. Далее нужно следовать инструкции, в которой указан диапазон значений конкретно для мультиметра. В том случае, если появилось значение, которое входит в диапазон, звучание клапана не должно измениться. Если устройство не соответствует техническим характеристикам, придется делать замену.

В зависимости от производителя, поставка клапана может осуществляться с прокладкой или без нее

Важно делать замену прокладки каждый раз после демонтажа запечатанной части двигателя. Это позволит избежать утечки охлаждающей жидкости, когда она начинает течь через корпус клапана

Классификация ДВС

С развитием ДВС начинали появляться различные их типы, которые перечислены ниже.

  1. Карбюраторные
  2. Поршневые
  3. Роторно-поршневые
  4. Инжекторные
  5. Дизельные
  6. Газотурбинные

Давайте рассмотрим каждый вид поподробнее.

Поршневые ДВС

В таких двигателях цилиндровая рабочая камера, а тепловая энергия становится механической благодаря кривошипно-шатунному механизму, который в дальнейшем передает полученную энергию на коленвал (коленчатый вал).

Роторно-поршневые ДВС

В них тепловая энергия трансформируется в механическую за счёт вращения ротора, который приводится в движение газами. Ротор одновременно является и поршнем, и механизмом, равномерно распределяющим газы.

Инжекторные ДВС

В таких ДВС используются специальные распыляющие устройства, которые позволяют топливной смеси попасть в цилиндр. Коллектором управляет электронный блок управления. Смесь в дальнейшем воспламеняется при помощи свечи зажигания.

Дизельные ДВС

В дизельных моторах процесс горения топливной смеси начинается за счёт сильного сжатия воздуха, а не за счёт зажигательной свечи. Через форсунки топливо впрыскивается в цилиндры, где и начинает гореть за счет нагретого воздуха, который нагревается под давлением до высокой температуры.

Газотурбинные ДВС

В них трансформация тепловой энергии в механическую происходит при помощи вращающегося ротора, который имеет специальные лопатки и приводит в движение турбинный вал.

Подводя итоги, можно сказать, что поршневые двигатели на данный момент являются самыми надежными, экономичными и неприхотливыми. Если в вашем авто стоит мотор, которого нет в списке, находящемся выше, значит он уже довольно сильно устарел, и, возможно, стоит задуматься о приобретении новой рабочей лошадки.

Как выбрать сварочный трансформатор

При выборе оборудования, необходимо учитывать поставленные задачи и, исходя из этого, приобретать модель. Производятся приборы следующих классов:

  • бытовые – для незначительных по объему работ в домашних условиях. Предполагает эксплуатацию в течение до 10 мин., после чего требуется перерыв. Величина сварочного тока не превышает 200 А;
  • профессиональные – применяется при выполнении ремонтов конструкций и рассчитан на продолжительную работу. Показатели сварочного тока – от 200 до 300 А;
  • промышленные – используются на производстве. Предполагают возможность непрерывной эксплуатации в течение суток с незначительными паузами. Производятся со сварочным током от 250 до 500 А.

Что такое режим холостого хода

Под режимом холостого хода понимают состояние устройства, при котором во время подачи переменного электротока на входную катушку выходная находится в разомкнутом состоянии. Данная ситуация характерна для агрегата, подключённого к электросети, при условии, что нагрузку к выходному контуру ещё не включили.

Режим короткого замыкания

В процессе эксперимента можно найти:

  • электроток холостого хода (замеряется амперметром) – обычно его значение невелико, не больше 0,1 от номинального показателя тока первой обмотки;
  • мощность, теряемую в магнитопроводе прибора(или другими словами потери в стали);
  • показатель трансформации напряжения – примерно равен значению в первичной цепи, деленному на таковое для вторичной (оба значения – данные вольтметров);
  • по результатам замеров силы тока, мощности и напряжения первичной электроцепи можно высчитать коэффициент мощности: мощность делят на произведение двух других величин.

Схема замещения в режиме трансформатора

Прямой электрический расчет трансформатора сложен по той причине, что он представляет собой две электрических цепи, связанных между собой магнитной цепью.

Для упрощения расчетов удобнее пользоваться упрощенной эквивалентной схемой. В схеме замещения вместо обмоток используются комплексные сопротивления:

  • для первичной обмотки комплексное сопротивление включается последовательно в цепь;
  • для вторичной обмотки параллельно нагрузке.

Каждое комплексное сопротивление состоит из последовательно соединенного активного сопротивления и индуктивности.

Активное сопротивление – это сопротивление проводов обмотки.

Режимы работы электрической цепи

Известно, что электрическая цепь – это совокупность определённых устройств, которые обеспечивают постоянное, непрерывное прохождение электрического тока. Работа цепи невозможна, если в ней отсутствуют какие-либо элементы; в обязательном порядке должны присутствовать как источники энергии, так и её проводники, а приёмники, как правило, — это основные устройства, образующие данную цепь. Если учесть, что в электрической цепи встречаются различные элементы, которые делятся на три основные группы: источники энергии, проводники тока и приёмники, т. е., те элементы, которые питаются от тока и преобразуют энергию в другие её виды, то можно предположить, что существует и различные режимы работы электрических цепей.Основные режимы работы электрических цепейКак уже было сказано ранее, любая электрическая цепь может иметь довольно сложную структуру, зависящую от количества элементов в ней и её разветвлённости. Всё это приводит к тому, что цепь может работать в различных режимах. Выделяют три основных режима работы: нагрузочный (или согласованный), режим короткого замыкания, а также режим холостого хода. Они отличаются друг от друга нагрузкой на электрическую цепь. Также можно выделить номинальный режим работы. В этом режиме работы все устройства в цепи работают при условиях, указанных для них как оптимальные. Эти характеристики прописываются производителем в паспортных данных при изготовлении устройства на заводе.Нагрузочный, или согласованный режим работы. Если к источнику энергии в электрической цепи подключается какой-либо приёмник, то он обладает неким сопротивлением. Таким приёмником может быть любое устройство, например электрическая лампочка.Если есть напряжение, то действует закон Ома, таким образом, ЭДС источника получается из суммы напряжений внешнего участка цепи и на внутреннем сопротивлении источника. Падение напряжение во внешней цепи будет равным напряжению на зажимах источника. Оно зависит от нагрузочного тока: чем меньше сопротивление нагрузки, тем больше ток и, соответственно, меньше напряжение на зажимах источника питания цепи.Другими словами можно сказать, что нагрузочный или согласованный режим работы представляет собой режим, при котором происходит передача нагрузки повышенной мощности от источника. В этом режиме сопротивление нагрузки равно внутреннему сопротивлению источника, при этом расходуется максимальная мощность.Однако, такой режим не рекомендуется использовать, так как при длительном превышении номинальных значений устройства могут выйти из строя.Режим работы холостого хода. Этот режим работы электрической цепи характеризует разомкнутое её состояние – ток отсутствует, и все элементы отключены от источника питания. В таком состоянии цепи внутреннее падение напряжение равно нулю, а напряжение на зажимах источника питание совпадает с ЭДС источника.Т. е., можно сказать, что режим холостого хода характеризует электрическую цепь, когда она находится в разомкнутом состоянии, а сопротивление нагрузки отсутствует полностью или отключено. Такое состояние цепи можно использовать для измерения ЭДС источника питания.Режим короткого замыкания. Этот режим работы считается аварийным, электрическая цепь не может работать нормально. Короткое замыкание возникает при соединении двух различных точек цепи, разница потенциалов которых отличается. Такое состояние не предусмотрено изготовителем устройства и нарушает его нормальную работу.В этом режиме работы зажимы источника энергии замкнуты проводником («закорочены»), при этом его сопротивление близко к нулю. Часто, короткое замыкание происходит в тех случаях, когда соединяются два провода, которые связывают между собой источник и приёмник в цепи, как правило, их сопротивление незначительно, так что его можно назвать нулевым.При возникновении режима короткого замыкания, ток в цепи значительно превышает номинальные значения (из-за отсутствия сопротивления). Это может привести в непригодное состояние источник энергии и приёмники в электрической цепи. В некоторых случаях это является результатом неправильных действий со стороны персонала, работающего с электротехническим оборудованием.

Советуем изучить — Программируемые реле времени

а) Опыт XX в поминальных условиях

Холостым ходом трансформатора называется режим работы, при котором к одной из его обмоток приложено номинальное напряжение номинальной частоты синусоидальной формы, а остальные обмотки разомкнуты. При испытании трехфазных трансформаторов, кроме того, необходимо, чтобы напряжение было практически симметричным. Ток. протекающий по обмоткам трансформатора, в этом случае называется током XX и обозначается I0. Ток XX данной обмотки выражается в процентах тока той же обмотки, приведенного к номинальной мощности трансформатора. В трехфазных трансформаторах значение тока XX определяют как среднее арифметическое трех измеренных значений токов XX различных фаз. Ток XX зависит от мощности трансформатора, конструкции магнитопровода, качества электротехнической стали и исполнения. Активная мощность, подводимая к трансформатору, расходуется главным образом на потери, вызванные перемагничиванием электротехнической стали (потери от гистерезиса), и на потерн от вихревых токов. Измеренные при этом потери в трансформаторе называются потерями XX и обозначаются Р0. При опыте XX трехфазного трансформатора подводимое напряжение определяют как среднее арифметическое трех измеренных линейных напряжений. В допускается за подводимое напряжение принимать линейное напряжение на вводах а—с(А—С).

При испытании трехфазных трансформаторов приложенное напряжение должно быть практически симметричным. Трехфазная система считается практически симметричной, если при ее разложении на системы векторов прямой и обратной последовательностей окажется, что размер векторов обратной последовательности не превышает 5% размера векторов Прямой последовательности. Cиcтемy линейных напряжений допускается считать практически симметричной, если каждое из линейных напряжений отличается не более чем на 4,5% от среднего арифметического трех линейных напряжений системы. Допуски для значений потерь и тока XX мощных трансформаторов согласно ГОСТ 11677-75 установлены следующие: для потерь XX +15%; для тока XX +30%. Назначение опыта XX состоит в том, чтобы определить потери и ток XX, соответствующие поминальному напряжению, при практически синусоидальном1 и симметричном напряжении и номинальной частоте. Затем результаты измерений сравнивают с расчетными. При изготовлении трансформатора опыт XX производят несколько раз (см. гл. 1). Это испытание является одним из наиболее часто повторяемых, и его проводят в следующих случаях: 1) при испытании магнитопровода (на первых экземплярах новых конструкций и в других случаях, когда это вызывается необходимостью),

  1. при операционном испытании при малом напряжении;
  2. при испытании трансформатора с запаянными отводами без бака (измерение потерь XX при малом напряжении);

4) приемосдаточные испытания (опыт XX при номинальных условиях и повторный опыт XX при тех же условиях после испытания электрической прочности изоляции индуктированным напряжением при повышенной частоте); 5) пофазные измерения потерь XX при малом напряжении (иногда делается для трех значений напряжений: при 5—10% номинального возбуждения трансформатора; при 380 и 220 В);

1 Кривая напряжения считается практически синусоидальной, если ни одна из ее ординат и не отличается от соответствующей ординаты основной синусоиды более чем на 5% амплитуды U основной синусоиды, т. е. если разность синусоидальность напряжения допускается проверять визуально с помощью электроннолучевого осциллографа.

Режим холостого хода

В соответствии с (7) и (9), поддержку режима легкой нагрузки можно обеспечить путем уменьшения среднего значения магнитного потока ФСР, желательно без изменения t1 и, соответственно, ΔФ. Согласно (5), переменная составляющая ΔФ определяется с учетом знака магнитного потока, поэтому, если принять ФНАЧ = –ФКОН, то, по формуле (8), получим ФСР = 0 при произвольных значениях ФНАЧ, ФКОН.

Что нам это дает? Переменная составляющая магнитного потока ΔФ зависит от соотношения напряжений на входе и выходе преобразователя; от UВХ/UВЫХ, согласно (9), зависит t1, а от него, согласно (4), ΔФ. Поэтому ΔФ во время работы преобразователя фактически определяется контуром стабилизации напряжения. Если при 100% мощности преобразователь работает в безразрывном режиме (ФНАЧ > 0), то по мере уменьшения тока нагрузки значения ФНАЧ и ФКОН уменьшаются на одинаковую величину без изменения ΔФ. Эти процессы происходят до тех пор, пока ФНАЧ не достигнет нулевого значения (Рисунок 6). С этого момента преобразователь переходит в режим легкой нагрузки, и его дальнейшая работа уже зависит от элементной базы силовой части.

Рисунок 6. Магнитный поток дросселя при уменьшении
тока нагрузки.

Если ключ S2 сделан на основе неуправляемого полупроводникового диода, то преобразователь перейдет в разрывный режим, при котором ΔФ и ФСР уменьшаются одновременно за счет уменьшения t1. Но если ключи S1 и S2 способны пропускать ток в обоих направлениях, например, при реализации их на основе MOSFET, то преобразователь перейдет в режим принудительной непрерывной проводимости, при котором знаки ФНАЧ и ФКОН будут отличаться. В этом режиме переменная составляющая ΔФ не изменяется, а уменьшение преобразуемой мощности происходит только за счет уменьшения ФСР.

Рисунок 7. Работа преобразователя в режиме холостого хода.

Дальнейшее уменьшение тока нагрузки приведет к еще большему смещению магнитного потока дросселя в отрицательную область. При полном отключении нагрузки преобразователь перейдет в режим холостого хода, особенностью которого является соблюдение равенства ФНАЧ = –ФКОН. В этом режиме между конденсаторами С1 и С2 происходит обмен энергией величиной WХХ (Рисунок 7):

  (10)

При замыкании ключа S1 энергия WХХ из дросселя L1 вначале передается в конденсатор С1 до тех пор, пока магнитный поток не достигнет нулевого значения, и дроссель L1 не разрядится. После этого под действием напряжения на конденсаторе С1 энергия снова начнет поступать в дроссель, но уже при другой полярности магнитного потока. К моменту размыкания ключа S1 в дросселе L1 будет содержаться WХХ энергии, которая после коммутации ключей S1 и S2 начнет передаваться в конденсатор С2. В середине второго этапа преобразования, после полного разряда дросселя, под действием напряжения на конденсаторе С2 магнитный поток снова изменит знак, и дроссель начнет потреблять энергию из конденсатора С2.

Очевидным достоинством принудительной непрерывной проводимости при легкой нагрузке является полная управляемость преобразователя. В этом режиме длительности t1 и t2 не зависят от тока нагрузки, что обеспечивает максимально эффективную регулировку выходного напряжения, в отличие от разрывного режима и режима пропуска импульсов. К недостаткам следует отнести повышенные потери из-за вынужденного преобразования энергии WХХ, что для некоторых приложений может быть серьезной проблемой.

Режим принудительной непрерывной проводимости возможен только в случаях, когда ключи S1 и S2 обеспечивают протекание тока в обоих направлениях, ведь при переменном магнитном потоке, в соответствии с законом полного тока, ток в обмотках также будет переменным. Для рассматриваемого обратноходового преобразователя, в котором ток всегда протекает только по одной обмотке, связь токов I1 и I2 обмоток W1 и W2 с магнитным потоком F будет определяться формулами:

  (11)

Из доступной элементной базы пропускать ток в обоих направлениях могут только MOSFET, поэтому режим принудительной непрерывной проводимости возможен лишь в синхронных преобразователях на основе этого типа полупроводниковых приборов (Рисунок 8). Если хоть один из ключей S1 и S2 выполнен на основе биполярных транзисторов, IGBT, диодов или других элементов, в которых ток может протекать только в одном направлении, для реализации режима принудительной непрерывной проводимости необходимо принимать дополнительные меры.

Рисунок 8. Синхронный и несинхронный преобразователи.

Также становится очевидной и роль конденсаторов С1 и С2, которые выступают не только в качестве фильтров, но еще и в качестве накопителей энергии, принципиально необходимых для работы при легкой нагрузке.

На чём основан принцип работы

Функционирование агрегата происходит следующим образом:

на катушку входа подаётся электроток, создаётся магнитное поле и электродвижущая сила, замыкаемая на сердечнике;
в результате на вторичной обмотке наводится свой магнитный поток и электрический ток;
различие в количестве витков обмоток изменяет параметры тока, позволяя достигнуть характеристик, обеспечивающих расплавление металла.

Для сварочных работ применяется трансформатор понижающего типа, у которого на входной катушке(первичной обмотке) количество витков превышает выходную(вторичную обмотку).


Принцип работы трансформатора

Сила выходного электротока может регулироваться за счёт подвижной конструкции устройства – путём увеличения или уменьшения зазора между катушками входа и выхода. При раздвижении катушки ток снижается, приближение вызывает увеличение указанной характеристики. Регулирование выполняется вращением рукоятки.

Величина тока подбирается, исходя из толщины и марки свариваемого металла, расположения сварочного шва. Чем толще свариваемые листы металла, тем больше потребуется создать величину тока на выходной катушке аппарата.


Соотношение величины тока с диаметром электрода и толщиной свариваемого металла

Холостой режим

Агрегат может функционировать в двух режимах:

В процессе сварки создаётся сварочная дуга, соединяющая посредством электрода обмотку на выходе со свариваемым металлом. Мощный сварочный электроток расплавляет свариваемый металл и создаёт неразъёмное соединение. После окончания сварки происходит вторичная цепь размыкается, и трансформатор переходит на холостой ход.

Во входной катушке возникают электродвижущие силы двойного происхождения:

  • благодаря созданию магнитного поля при работе устройства;
  • посредством рассеивания – часть из них отделяется от ЭДС на сердечнике и образуют электроток холостого хода.

Конструкция агрегата выполняется таким образом, чтобы величина напряжения на холостом ходу не представляла опасности для здоровья человека, выполняющего работы с помощью трансформатора.

Значение напряжения на холостом ходу ограничивается 48 В, в некоторых случаях допускается величина до 70 В. В целях безопасности устанавливается ограничивающее устройство, снижающее величину напряжения при превышении указанного значения, работающее в автоматическом режиме.

Дополнительная защита обеспечивается за счёт выполнения заземления аппарата.

Режим холостого хода трансформатора

Холостым ходом (ХХ) называют такое подключение устройства, когда на первичную обмотку подается номинальное переменное напряжение, а цепи всех вторичных – разомкнуты (нагрузки не подключены).

В преобразователе напряжения, деление обмоток (катушек) на первичную и вторичные условно. Любая из них становится первичной, когда на нее поступает исходное переменное напряжение. Прочие, в них наводится ЭДС — становятся, соответственно, вторичными.

Опыт холостого хода проводится по схеме показанной на рисунке

Следовательно, любой трансформатор, соответственно способу подключения, может быть как понижающим, так и повышающим (кроме разделительного – с коэффициентом трансформации, равным единице).

Поскольку цепь вторичной катушки разъединена, тока в ней нет (I2 = 0). В первичной протекает I1, формирующий в магнитопроводе поток вектора магнитной индукции Ф1. Последний меняется по синусоидальному закону, но из-за перемагничивания стали отстает по фазе от I1 на угол B (угол потерь).

Применяют следующую терминологию:

  • I1: ток ХХ трансформатора;
  • Ф1: рабочий магнитный поток.

Под действием Ф1 во всех катушках возникает ЭДС:

  • в первичной – самоиндукции (Е1);
  • во вторичных – взаимоиндукции (Е2).

Зависимость ЭДС от различных параметров определяется формулами:

Е1 = 4,44 * f * W1 * Ф1max *10-8 ,

Е2 = 4,44 * f * W2 * Ф1max * 10-8, где

F — частота, Гц;

W1 и W2 — число витков в обмотках;

Ф1max — величина магнитного потока в точке максимума.

Следовательно, числовое значение ЭДС находится в прямой зависимости от числа витков катушки. Из соотношения ЭДС в первичной и вторичной обмотках, определяют главный параметр аппарата— коэффициент трансформации (К): К = Е1 / Е2 = W1 / W2.

Вторичная катушка по сравнению с первичной содержит витков:

  • в повышающем трансформаторе – больше (К меньше единицы);
  • в понижающем – меньше (К больше единицы).

Помимо рабочего (основного), в установке образуется магнитный поток рассеяния Фр1. Это силовые линии, ответвляющиеся от рабочего магнитного потока Ф1 в сердечнике и замыкающиеся по воздуху вокруг витков катушек. Как и Ф1, Фр1 является переменным, а значит, он, согласно закону электромагнитной индукции, наводит в первичной обмотке ЭДС самоиндукции Ер1.

Е1 и Ер1  всегда направлены против приложенного к первичной обмотке напряжения U1. По характеру действия на ток, они подобны резистору, потому и обозначаются термином «индуктивное сопротивление» (Х).

Емкостное и индуктивное сопротивление

Следовательно, создавая I1, напряжение U1 преодолевает активное сопротивление R1 первичной катушки и обе ЭДС самоиндукции. Математически это выглядит так: U1 = I1 * R1 + (-Е1) + (-Ер1).

Запись выполнена в векторной форме, поэтому перед обозначениями ЭДС самоиндукции проставлены значки «-»: они говорят о противоположном направлении этих векторов относительно напряжения U1. Ток холостого хода I1 не является строго синусоидальным.

Он искажается, поскольку имеет в своем составе так называемую третью гармоническую составляющую (ТГС), обусловленную вихревыми токами, гистерезисом и магнитным насыщением магнитопровода. Но с определенной долей приближения, годной для практических расчетов, его можно заменить эквивалентным синусоидальным током с равноценным действующим значением.

Проверка работы

Главное назначение данного опыта в сочетании с экспериментом короткозамкнутого состояния – нахождение коэффициента полезного действия трансформирующего устройства. После постановки трансформатора в надлежащий режим проводятся следующие измерения:

  1. Данные напряжения, направляемого на первую обмотку, и затем – на выводы второй. Можно это делать не только парой вольтметров, но и мультиметром, установив соответствующий режим работы. Если для замеров используются вольтметры, на вторую катушку ставят аппарат с большим значением сопротивления, чтобы поддерживать нулевой ток. Замерив оба показателя, можно найти коэффициент трансформации, разделив значение первичной катушки на таковое для вторичной.
  2. Ваттметр для регистрации потребляемой мощности ставят в первичную электроцепь. В нее же подсоединяют амперметр, он показывает токовую силу прибора, работающего на холостом ходу.


Измерение напряжения трансформатора мультиметром

Понравилась статья? Поделиться с друзьями:
Автобасс
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: