Главная передача
Главная передача предназначена для увеличения крутящего момента, передаваемого к ведущим колесам. Устройство ее, на первый взгляд, весьма просто — две шестерни. Одна, размером поменьше, является ведущей, вторая, побольше — ведомой. Но от конструкции главной передачи во многом зависят тягово-скоростные характеристики автомобиля и расход топлива.
На заднеприводных автомобилях применяется гипоидная главная передача, так как крутящий момент нужно передать на ведущие колеса под углом 90 градусов. Почему применяется более сложная в изготовлении гипоидная передача, а не простая коническая? Да потому что у конической передачи ее простота является единственным преимуществом. А недостатков больше: шумность, низкая несущая способность, высокое расположение карданного вала (а, следовательно, и трансмиссионного туннеля в кузове автомобиля). В гипоидной передаче ось ведущей шестерни смещена относительно оси ведомой на величину гипоидного смещения. Поэтому карданный вал располагается ниже, что позволяет уменьшить высоту трансмиссионного туннеля. При этом снижается центр тяжести автомобиля, тем самым улучшая его устойчивость.
Зубья шестерен выполняются косыми или криволинейными. Благодаря тому, что в гипоидной передаче одновременно находится в зацеплении больше зубьев, чем в конической, обеспечивается ее плавная и бесшумная работа, повышается нагрузочная способность. Однако, из-за более плотного прилегания зубьев увеличивается опасность заклинивания, особенно при изменении направления вращения. Поэтому гипоидные передачи требуют высокой точности регулировки и применения специального трансмиссионного масла. В масла для гипоидных передач добавляются противоизносные и противозадирные присадки.
В переднеприводных автомобилях, где нет необходимости изменять направление передаваемого момента, в главной передаче применяются простые цилиндрические шестерни. Конструктивно главная передача устанавливается в общем картере с коробкой передач. Цилиндрические передачи просты в изготовлении, недороги, опасность задиров низка. Поэтому для их смазки в большинстве случаев применяется не специальное трансмиссионное масло, а моторное.
Как влияет передаточное число главной пары на тягово-динамические характеристики? Чем оно выше, тем быстрее происходит разгон, но максимальная скорость ниже. И, наоборот, с уменьшением передаточного числа автомобиль разгоняется медленнее, но достигает большей максимальной скорости. Значение передаточного числа для конкретной модели автомобиля подбирается с учетом характеристик двигателя, размера колес, возможностей тормозной системы.
Для чего нужна главная передача и что это такое
Как известно, сегодня на автомобили устанавливаются следующие типы КПП:
- механическая коробка (выбор передачи осуществляется вручную);
- автоматическая коробка (обеспечивает автоматический выбор передачи, соответствующей текущим условиям движения);
- вариаторная бесступенчатая коробка (обеспечивает плавное изменение передаточного числа.);
- роботизированная коробка (механическая коробка передач, функции выключения сцепления и переключения передач автоматизированы).
Основная задача КПП — передача и изменение крутящего момента от двигателя к ведущим колесам с возможностью изменения передаточных чисел. На выходе из коробки крутящий момент небольшой, а скорость вращения выходного вала высокая.
Для повышения крутящего момента и снижения скорости вращения служит главная передача автомобиля, имеющая определенное передаточное число. Передаточное число главной передачи зависит от типа, назначения автомобиля и оборотистости двигателя. Обычно передаточные числа главных передач легковых автомобилей находятся в диапазоне 3,5-5,5, грузовых 6,5-9.
Классификация главных передач
По числу пар зацеплений
- Одинарная – имеет в составе только одну пару шестерен: ведомую и ведущую.
- Двойная – имеет в составе две пары зубчатых колес. Делится на двойную центральную или двойную разнесенную. Двойная центральная располагается только в ведущем мосту, а двойная разнесенная еще и в ступице ведущих колес. Применяется на грузовом транспорте, так как на нем требуется повышенное передаточное число.
Одинарная и двойная главная передача
По виду зубчатого соединения
- Цилиндрическая. Применяется на машинах с передним приводом, в которых двигатель и коробка переключения передач имеют поперечное расположение. В этом типе соединения применяются шестерни с шевронными и косыми зубьями.
- Коническая. Используется на тех заднеприводных машинах, в которых не важны размеры механизмов и нет ограничений на уровень шума.
- Гипоидная – самый популярный вид зубчатого соединения для автомобилей с задним приводом.
- Червячная -в конструкции трансмиссии автомобилей практически не применяется.
Цилиндрическая главная передача
По компоновке
- Размещенные в коробке передач либо в силовом агрегате. На переднеприводных автомобилях главная передача расположена непосредственно в корпусе КПП.
- Размещенные отдельно от КПП. В машинах с задним приводом главная пара шестерен располагается в картере ведущего моста вместе с дифференциалом.
Отметим, что в полноприводных автомобилях расположение главной пары зубчатых колес зависит от разновидности привода.
Коническая главная передача
Виды и их применяемость
Основной характеристикой главных передач является тип шестерен и вид зацепления зубьев между ними. На авто используются такие типы редукторов:
- Цилиндрический
- Конический
- Гипоидный
- Червячный
Випы главных передач
Цилиндрические шестерни применяются в главных передачах переднеприводных авто. Отсутствие надобности в изменении направления вращения и позволяет использовать такой редуктор. Зубья на шестернях – косые или шевронные.
Передаточное число для таких редукторов находится в диапазоне 3,5-4,2. Большее передаточное число не используется, поскольку для этого необходимо повышать размеры шестеренок, что сопровождается увеличением шумности работы передачи.
Коническая, гипоидная и червячная передачи используются там, где необходимо не только изменение передаточного числа, а и изменение направления вращения.
Конические редукторы применяются обычно на грузовых авто. Их особенность сводится к тому, что оси шестеренок перекрещиваются, то есть находятся на одном уровне. В таких передачах используются зубья косой или криволинейной формы. На легковых авто этот тип редуктора не используется из-за значительных габаритных размеров и повышенной шумности.
На заднеприводных легковушках чаще всего применяется иной тип – гипоидный. Его особенность сводится к тому, что оси шестерен смещены. За счет расположения ведущей шестерни ниже относительно оси ведомой, удается уменьшить габариты редуктора. При этом этот тип передачи характеризуется повышенной устойчивостью к нагрузкам, а также плавностью и бесшумностью работы.
Червячные передачи – наименее распространенные и на авто практически не используются. Основная причина этого – сложность и дороговизна изготовления составных элементов.
Дифференциал в автомобиле
Дифференциал служит для распределения крутящего момента между колесами или мостами и позволяет ведомым валам вращаться с неодинаковыми угловыми скоростями.
За редким исключением, дифференциал состоит из конических зубчатых колес. (см. рис. «Принципиальная схема дифференциала» ) Если шестерни слева и справа — одинаковых размеров, дифференциал осуществляет равное распределение крутящего момента на левое и правое колеса. При различных коэффициентах сцепления левых и правых шин с дорожным покрытием сохраняется равенство моментов на левой и правой шине. При этом шина с меньшим коэффициентом сцепления начинает буксовать.
Подробнее о межколесных дифференциалах можно почитать здесь.
Дифференциал повышенного трения (LSD)
Дифференциал повышенного трения (LSD) позволяет устранить этот нежелательный эффект посредством использования фрикционных дисков, фрикционных конусов, самоблокирующихся зубчатых передач или многодисковых муфт, находящихся в высоковязкой жидкостной среде.
Дифференциал повышенного трения может иметь электронное управление для работы в широком диапазоне эксплуатационных условий. Высокий коэффициент блокировки, характерный при трогании автомобиля с места, может уменьшаться при возрастании частоты вращения или при достижении предельной величины силы тяги. Включаемая водителем блокировка дифференциала может использоваться при специфических условиях движения (например, во время движения по бездорожью).
Самоблокирующиеся дифференциалы, в которых автоматически действует устройство, препятствующее относительному вращению ведомых звеньев, постепенно вытесняются электронными системами, например, системой контроля тягового усилия (TCS). Такая система обеспечивает замедление проворачивания колеса посредством использования тормоза — когда мощность продолжает передаваться от трансмиссии к притормаживаемому колесу.
Плюсы и минусы
У каждого типа зубчатых соединений есть свои достоинства и недостатки.
- Цилиндрическая главная передача. Максимальное передаточное число ограничено до 4,2. Дальнейшее увеличение соотношения количества зубьев приводит к значительному увеличению размеров механизма и увеличению уровня шума.
- Главная передача гипоидная. Этот тип имеет низкую нагрузку на зубья и низкий уровень шума. Наряду с этим из-за смещения в зацеплении шестерен увеличивается трение скольжения и снижается КПД, но при этом появляется возможность максимально опустить карданный вал. Передаточное число легковых автомобилей — 3,5-4,5; для грузовых — 5-7;
- Коническая главная передача. Она редко используется из-за огромных размеров и шума.
- Червячная главная передача. Фактически, этот тип зубчатого соединения не используется из-за трудоемкости изготовления и высокой стоимости.
Назначение
Применение дифференциалов в трансмиссиях автомобилей обусловлено необходимостью обеспечить вращение ведущих колёс одной оси с разной частотой. В первую очередь это необходимо в поворотах, но также и при разном диаметре ведущих колёс, что возможно при вынужденной установке шин двух разных типоразмеров или при разности давления в шинах. В случае, если оба колеса имеют жёсткую кинематическую связь, любое рассогласование частот вращения по вышеупомянутым причинам приводит к возникновению так называемой паразитной циркуляции мощности. Это безусловно вредное явление вызывает проскальзывание колеса с меньшей силой сцепления относительно поверхности дороги, дестабилизирует движение автомобиля по дуге, нагружает трансмиссию и двигатель, повышает расход топлива и проявляется тем сильнее, чем меньше радиус поворота и выше силы сцепления, действующие на колёса. Дифференциал, установленный в разрез валов привода колёс одной оси, позволяет разорвать жёсткую кинематическую связь между колёсами и устранить паразитную циркуляцию мощности, не потеряв при этом возможностей по передаче мощности на каждое колесо с КПД близким к 100%. Подобный дифференциал называется «межколёсным», а данная область применения является основной для дифференциалов вообще, так как межколёсный дифференциал присутствует в приводе ведущих колёс всех легковых, грузовых и абсолютно подавляющей части внедорожных, спортивных и гоночных автомобилей.
Помимо привода ведущих колёс автомобиля дифференциалы также применяются:
- В приводе двух и более постоянно ведущих осей от одного двигателя (так называемый «межосевой» дифференциал).
- В приводе соосных воздушных и водных винтов противоположного вращения (в качестве дифференциала и редуктора одновременно).
- В дифференциальных механизмах поворота гусеничных машин (в связке из одного-двух-трёх дифференциалов с разными принципами совместной работы).
- При сложении передаваемой вращением мощности от двух двигателей с произвольными частотами вращения на один общий вал.
При повороте автомобиля, все его колеса проходят разный по длине путь, и если между двумя ведущими колесами существует жесткая связь, они начнут проскальзывать. Скольжение колес при повороте приводит к повышенному расходу топлива, износу шин, нарушению устойчивости и т. п.
Дифференциал позволяет ведомым валам вращаться с разными угловыми скоростями и выполняет функции распределения подводимого к нему крутящего момента между колесами или ведущими мостами. Дифференциалы бывают межколесными и межосевыми (в случае установки между несколькими ведущими мостами).
Впервые дифференциал был применен в 1897г. на паровом автомобиле. В настоящее время все автомобили имеют межколесные дифференциалы на ведущих мостах. Наиболее распространенным является конический симметричный дифференциал, включающий в себя: корпус, сателлиты, ось сателлитов (или крестовину) и полуосевые шестерни. Обычно число сателлитов в дифференциалах легковых автомобилей — два, грузовых и внедорожных — четыре.
Симметричный дифференциал получил свое название за способность распределять подводимый момент поровну при любом соотношении угловых скоростей, соединенных с ним валов. Применение такого дифференциала в качестве межколесного, обеспечивает устойчивость при прямолинейном движении, а также при торможении двигателем на скользкой дороге.
Существенным недостатком обычного дифференциала является снижение проходимости автомобиля, если одно из его колес попадает в условия малого сцепления с опорной поверхностью. При этом на колесо, находящееся в нормальных сцепных условиях, нельзя подвести крутящий момент, превышающий тот, который может быть реализован на колесе, находящемся в условиях малого сцепления (это приводит к пробуксовке колеса). Для преодоления этого недостатка в некоторых конструкциях используются Дифференциалы полноприводных автомобилей различных конструкций.
1) с электронной блокировкой;
2) с дисковым дифференциалом;
3) с вязкостной муфтой.
Управление системой осуществляется как механически водителем, так и с помощью специальных блоков управления, которые учитывают угловые скорости колес и разность крутящего момента на переднем и заднем приводе. Полностью автоматические системы позволяют экономить топливо, обеспечивают улучшение проходимости автомобиля, облегчая его управление на высокой скорости и лучше реализуют мощность мотора.
Сегодня подобные системы самоблокирующихся дифференциалов зарекомендовали себя с наилучшей стороны, они отличаются прочностью, надежностью и долговечностью, не требуя в процессе эксплуатации какого-либо сложного обслуживания и ремонта.
Устройство и основные требования к главной передаче
Устройство рассматриваемого механизма простое: главная передача состоит из двух шестерен (зубчатый редуктор). Ведущая шестерня имеет меньший размер, при этом она имеет связь с вторичным валом коробки передач. Ведомая шестерня больше ведущей, а связана она с дифференциалом и, соответственно, с колесами машины.
Схема главной передачи ведущего моста автомобиля: 1 – ведущие колеса; 2 – полуось; 3 – ведомая шестерня; 4 -ведущий вал; 5 -ведущая шестерня Рассмотрим основные требования, предъявляемые к главной передаче:
- минимальный уровень шума и вибраций при работе;
- минимальный расход топлива;
- высокий КПД;
- обеспечение высоких тягово-динамических характеристик;
- технологичность;
- минимальные габаритные размеры (чтобы увеличить клиренс и не повышать уровень пола в автомобиле);
- минимальная масса;
- высокая надежность;
- минимальная необходимость в обслуживании.
Увеличить КПД главной передачи можно повысив качество изготовления зубьев обоих шестерен, а также увеличив жесткость деталей и применив в конструкции подшипники качения. Отметим, что максимально сокращать вибрации и шум при работе чаще всего требуется для зубчатых редукторов легковых автомобилей. Вибрации и шум можно минимизировать, обеспечив надежное смазывание зубьев, повысив точность зацепления зубчатых колес, увеличив диаметр валов, а также прочими мерами, которые повышают жесткость элементов механизма.
Что такое дифференциал, для чего он нужен, и как устроен
Дифференциал как автомобильный механизм скоро отметит двухвековой юбилей, однако его конструкция за эти долгие годы хоть и совершенствовалась, но сохранила ключевые особенности. Что же такое дифференциал, и какую роль он выполняет в автомобиле?
Д ифференциал в автомобиле – это механизм, который позволяет передавать мощность и, следовательно, вращение от коробки передач к колесам, разделяя поток этой мощности на два, для каждого из колес одной оси, с возможностью изменять соотношение передаваемой к ним мощности, и, следовательно, позволяя колесам вращаться с разной скоростью. Проще говоря, дифференциал разделяет 100% мощности, передаваемой коробкой передач, на два потока для каждого из колес на одной оси, и эти потоки могут перераспределяться в зависимости от условий движений от 50:50 до 100:0.
Основное предназначение дифференциала – обеспечить возможность вращения колес на одной оси с разной скоростью с сохранением неразрывного потока крутящего момента
Для автомобиля это важно прежде всего в поворотах: ведь при движении по дуге колеса на внешней стороне поворота проходят больший путь, чем колеса на внутренней, а значит, должны вращаться с большей скоростью для сохранения стабильности машины
Если же колеса на оси будут соединены жестко, то внутреннее колесо в повороте будет пробуксовывать. Для заднеприводного автомобиля это повышает риск заноса, а для переднеприводного радикально ухудшает управляемость и контроль автомобиля в повороте. Таким образом, обеспечение свободного и независимого вращения колес на одной оси с сохранением постоянства передачи на них крутящего момента от двигателя было одной из принципиальных задач с момента создания автомобиля – и это задача была успешно решена.
Дифференциал являет собой частный случай планетарной передачи. Физически он обычно представляет собой набор из четырех шестерней, вращение к которым передается пятой – ведомой шестерней главной передачи, объединенной с корпусом дифференциала, выполняющим роль водила. Главная передача – это набор из двух шестерней: ведущая получает вращение от КПП и передает его ведомой. Ведомая же шестерня главной передачи передает вращение через корпус на шестерни-сателлиты, а они, в свою очередь, находятся в зацеплении с солнечными шестернями, жестко закрепленными на приводных полуосях колес.
Когда автомобиль движется по прямой, шестерни-сателлиты неподвижны, и скорость вращения шестерни главной передачи равна скоростям вращения солнечных шестерней: колеса вращаются с одинаковой скоростью. В повороте же шестерни-сателлиты начинают вращаться, обеспечивая разницу скоростей солнечных шестерней и, следовательно, колес на внешней и внутренней стороне поворота.
Главным недостатком дифференциала одновременно является его главное преимущество – возможность передавать до 100% мощности на одно из колес. Исходя из этого, в условиях, когда одно колесо имеет недостаточное сцепление с поверхностью, основная часть мощности будет передаваться именно на него. Таким образом, порой даже имея одно колесо на поверхности с достаточным сцеплением, автомобиль не может тронуться с места.
Для устранения этой проблемы были разработаны разнообразные конструкции – дифференциалы с повышенным внутренним сопротивлением (так называемые самоблоки) и дифференциалы с принудительной блокировкой, ручной или автоматизированной. В зависимости от конструкции и назначения они могут как изменять перераспределение потока мощности в пользу колеса с хорошим сцеплением с поверхностью, так и полностью замыкать дифференциал, заставляя колеса на оси вращаться с одинаковой скоростью. Разные типы таких дифференциалов мы рассмотрим в отдельных материалах.
Устройство и основные требования к главной передаче
Устройство рассматриваемого механизма простое: главная передача состоит из двух шестерен (зубчатый редуктор). Ведущая шестерня имеет меньший размер, при этом она имеет связь с вторичным валом коробки передач. Ведомая шестерня больше ведущей, а связана она с дифференциалом и, соответственно, с колесами машины.
Схема главной передачи ведущего моста автомобиля: 1 – ведущие колеса; 2 – полуось; 3 – ведомая шестерня; 4 -ведущий вал; 5 -ведущая шестерня Рассмотрим основные требования, предъявляемые к главной передаче:
- минимальный уровень шума и вибраций при работе;
- минимальный расход топлива;
- высокий КПД;
- обеспечение высоких тягово-динамических характеристик;
- технологичность;
- минимальные габаритные размеры (чтобы увеличить клиренс и не повышать уровень пола в автомобиле);
- минимальная масса;
- высокая надежность;
- минимальная необходимость в обслуживании.
Увеличить КПД главной передачи можно повысив качество изготовления зубьев обоих шестерен, а также увеличив жесткость деталей и применив в конструкции подшипники качения. Отметим, что максимально сокращать вибрации и шум при работе чаще всего требуется для зубчатых редукторов легковых автомобилей. Вибрации и шум можно минимизировать, обеспечив надежное смазывание зубьев, повысив точность зацепления зубчатых колес, увеличив диаметр валов, а также прочими мерами, которые повышают жесткость элементов механизма.
Блокировка дифференциала и система курсовой устойчивости
Принудительная блокировка дифференциала с гидравлическим приводом Чтобы крутящий момент полуосей снова стал одинаковым, нужно блокировать действие сателлитов или обеспечить его передачу от чашки на нагруженную полуось.
Это особенно актуально для машин повышенной проходимости, имеющих полный привод 4Х4. Не только потому что они предназначены для езды по местности с тяжелыми дорожными условиями. Стоит машине, оснащенной тремя дифференциалами (два межколесных, один межосевой), хотя бы в одной из четырех точек потерять сцепление – величина крутящего момента остальных колес устремится к нулевому значению, и машина откажется ехать.
Избежать неприятностей помогает блокировка, которая может быть либо частичной, либо полной (зависит от степени перераспределения усилий между полуосями), а также либо ручной, либо автоматической (зависит от степени контроля со стороны водителя).
Хорошо себя зарекомендовали самоблокирующиеся дифференциалы, распределяющие крутящий момент, учитывая его разность на полуосях или исходя из значений угловых скоростей.
Наиболее сложным совершенным способом устранить недостатки узла является электронная блокировка, реализуемая на базе системы курсовой устойчивости, датчики которой контролирует все необходимые параметры во время движения автомобиля. На основе полученных данных работа автомобиля корректируется автоматически.
Главная передача на полноприводном автомобиле
Компоновочная схема с приводом на все колеса улучшает тяговое усилие легковых автомобилей, внедорожных транспортных средств и грузовых автомобилей на мокрых и скользких дорожных покрытиях и неровной местности.
У автомобиля с постоянным полным приводом и распределением крутящего момента поровну между ведущими осями используется конический дифференциал или планетарный механизм. Распределение крутящего момента изменяется с помощью автоматических или управляемых дифференциалов повышенного трения.
Управление полным приводом (с жестким приводом на передний и задний мосты, вязкостной муфтой или раздаточной коробкой) включает блокировку дифференциала в главной передаче и раздаточной коробке (имеющей пониженную передачу для движения на крутых уклонах, при низких скоростях и для передачи высоких крутящих моментов).
Вязкостная муфта (герметизированный многодисковый механизм с высоковязкой кремнийорганической жидкостью) либо дифференциал Torsen представляют собой еще одно средство приведения в действие привода на все колеса. Как только предельное тяговое усилие на постоянно подключенном мосту превышается, муфта, реагируя на увеличение проскальзывания, начинает передавать крутящий момент ко второму ведущему мосту.
Передача полного привода может осуществляться дополнительным узлом в автоматической трансмиссии. Интеграция такого узла (рис. «Автоматическая трансмиссия легкового автомобиля с интегрированным полным приводом (ZZ 8 HP)» ) позволяет уменьшить объем занимаемого пространства, стоимость и массу трансмиссии.
На более поздних автомобилях стали применяться дополнительные блокировки дифференциала в раздаточной коробке, осуществляемые в соответствии с интеллектуально контролируемым функционированием тормозов.
Подробнее о полноприводных автомобилях можно почитать здесь.
Пример HTML-страницы
РЕКОМЕНДУЮ ЕЩЁ ПОЧИТАТЬ:
Пример HTML-страницы
3 Свойства дифференцируемых функций
4.4 Правило Лопиталя и раскрытие неопреленностей
Теорема. Если функция $f(x)$ дифференцируема в точке $x_0$, то эта функция непрерывна в точке $x_0$.
Доказательство.
Замечание. Обратное утверждение не верно: непрерывная функция не обязана быть дифференцируемой. Т.о., дифференцируемость «более сильное» свойство, чем непрерывность.
Определение. Пусть функция $y=f(x)$ задана на интервале $(a,b)$, $x_0 \in (a,b)$. Говорят, что функция $y=f(x)$ имеет в точке $x_0$ локальный максимум, если для некоторой окрестности этой точки $U$ справедливо: $f(x) \leq f(x_0)$ при всех $x \in U$. Аналогичным образом определяется локальный минимум.
Теорема Ферма. Пусть функция $y=f(x)$ задана на интервале $(a,b)$, $x_0 \in (a,b)$, причем $f(x)$ дифференцируема в точке $x_0$. Если $f(x)$ имеет в точке $x_0$ локальный максимум (или локальный минимум), то $f'(x_0)=0$.
Доказательство.
Теорема Ферма является необходимым условием наличия в точке $x_0$ локального максимума или локального минимума функции $f(x)$ — этим условием является равенство $f'(x_0)=0$. Для вывода достаточного условия нам потребуется несколько более продвинутая техника, оно обсуждается ниже. В связи с этими условиями возникает следующее определение.
Определение.Стационарной точкой (или: экстремальной точкой) функции $f(x)$ называется такая точка $x_0$, которая удовлетворяет условию $f'(x_0)=0$.
Теорема Ролля. Пусть функция $f(x)$ удовлетворяет следующим условиям.
1. Она непрерывна на интервале $\left $.
2. Она дифференцируема на интервале $(a,b)$.
3. $f(a)=f(b)$.
Тогда на интервале $\left $ найдется точка $c$ такая, что $f'(c)=0$.
Доказательство.
Рассмотрим геометрическую интерпретацию теоремы Ролля.
Рис 4: К геометрическому смыслу теоремы Ролля
На рисунке 4 изображена функция, принимающая равные значения на концах. В соответствии с заключением теоремы, существует точка $c$, в которой касательная к графику функции параллельна оси $x$ (т.е. $f'(c)=0$).
Теорема Лагранжа. Пусть функция $f(x)$ удовлетворяет следующим условиям.
1. Она непрерывна на интервале $\left $.
2. Она дифференцируема на интервале $(a,b)$.
Тогда на интервале $\left $ найдется точка $c$ такая, что
\begin{equation}
f'(c)=\frac{f(b)-f(a)}{b-a}. (11)
\label{Lagr}
\end{equation}
Доказательство.
Формула (11) называется формулой конечных приращений. Ее можно переписать в виде:
\
где, напомним, $c \in (a,b)$.
Рис 5:К геометрическому смыслу теоремы Лагранжа
В таком виде она часто используется в том случае, когда требуется вычислить (или оценить) величину $f(b)-f(a)$.
Рассмотрим геометрическую интерпретацию теоремы Лагранжа, см. рис. 5. Значение $f'(c)$ фиксирует угол наклона касательной к графику в точке $c$, выражение $(f(b)-f(a))/(b-a) $ задает угол наклона хорды, соединяющей концы кривой. Таким образом, теорема Лагранжа утверждает, что между $a$ и $b$ найдется такая точка $c$, что каcательная к графику в этой точке параллельна хорде, соединяющей концы кривой.
Теорема Коши. Пусть функции $f(x),g(x)$ удовлетворяют следующим условиям.
1. Они непрерывны на интервале $\left $.
2. Они дифференцируемы на интервале $(a,b)$, причем $g(a) \neq g(b)$.
Тогда на интервале $\left $ найдется точка $c$ такая, что
\
Доказательство.
Теорема Лагранжа является частным случаем теоремы Коши в том случае, когда $g(x)=x$.
4.4 Правило Лопиталя и раскрытие неопреленностей
Межосевой дифференциал
Блокировать межосевой дифференциал следует только на грязных и скользких дорогах.
Применение межосевого дифференциала уменьшает износ и повышает долговечность механизмов трансмиссии и шин, однако при буксовании колес одной из осей он может ухудшить проходимость автомобиля. Чтобы избежать этого, на автомобилях КрАЗ применяется механизм блокировки межосевого дифференциала в виде зубчатой муфты 13, соединение которой с внутренними зубьями шестерни 7, исключает возможность поворачивания шестерен сателлитов на своих осях, а следовательно, приводит к выключению дифференциала.
Применение межосевого дифференциала позволяет снизить, а в случае применения дифференциала с малым внутренним трением практически устранить вредное влияние циркулирующей мощности в трансмиссии. При этом исключается перегрузка элементов трансмиссии многоосных автомобилей.
Схема несимметричного межосевого дифференциала из цилиндрических шестерен для привода на 4 колеса.
Конструкция несимметричного межосевого дифференциала с цилиндрическими сателлитами, распределяющего момент на передний и задний мосты трехосного автомобиля ( Урал-375), представлена на рис. VI. Момент от промежуточного вала 12 раздаточной коробки передается на шестерню 5, приболченную к корпусу 6 межосевого дифференциала. Шестерня 7 передает через вал 8 момент на передний мост, а шестерня 3 с внутренним зацеплением, жестко посаженная на вал 4 — на задние мосты.
Наоборот, межосевой дифференциал, включенный между ведущими мостами, располо-на значительном расстоянии друг от друга ( например, передним и задним) весьма целесообразен, так как при этом снижаются нагрузки в трансмиссии особенно на поворотах.
Целесообразность применения межосевых дифференциалов в автомобилях с приводом на несколько осей в настоящее время еще не совсем ясна. Для каждой оси применяется свой дифференциал. Конструкция, при которой мосты соединены через дифференциал, распределяющий крутящий момент, согласно нагрузке на ось, встречается очень редко.
Механизм блокировки межосевого дифференциала должен быть собран и установлен на картер межосевого дифференциала. Винт установочной вилки и контргайка винта должны быть завернуты через отверстие под заливную пробку картера межосевого дифференциала. При подаче воздуха под давлением 2 кгс / см2 в камеру механизма блокировки межосевого дифференциала вилка муфты включения блокировки должна переместиться в крайнее положение до упора в картер межосевого дифференциала. При выпуске воздуха из камеры вилка муфты должна возвращаться до упора1 в корпус механизма блокировки.
Кинематическая схема заднего моста трактора ТДТ-55А с муфтами. |
Сателлиты 5 межосевого дифференциала находятся в зацеплении с шестерней 3, сидящей на шлицах ведущей шестерни 2 главной передачи, и шестерней 6, которая проходным валом 1 передает крутящий момент к заднему ведущему мосту.
При наличии межосевого дифференциала выходные валы могут вращаться с неодинаковой угловой скоростью. Распределение крутящих моментов между валами привода переднего и заднего мостов определяется внутренним передаточным числом дифференциала ( см. гл.
В отличие от межосевого дифференциала КрАЗ, имеющего конические сателлиты, дифференциал Урал — 375Д имеет четыре сателлита 1, находящихся в зацеплении с солнечной бис коронной 4 шестернями.
Раздаточные коробки с межосевым дифференциалом — трех-вальные. Крутящий момент в них с ведущего вала 2 через одну зубчатую пару передается на промежуточный вал 6 и затем дифференциалом 7 перераспределяется между ведомыми валами 9 и 8 в требуемом соотношении.
Для повышения проходимости автомобилей межосевые дифференциалы иногда выполняют с принудительной блокировкой или самоблокирующимися.
Коробка перемены передач имеет межосевой дифференциал и механизм блокировки. Межосевой дифференциал распределяет крутящий момент между мостами позволяет передним и задним колесам вращаться с разными числами оборотов, уменьшает нагрузки а износ деталей. Механизм блокировки дифференциала повышает общую силу тяги на плохих дорогах и улучшает проходимость краня.